Essential C# 12.0 (Paperback) Errata

Page xxvi

<

* Chapter 9, Introducing Sussetsmgnd Records: C# 9.0 introduced the concepts
of|records for structs @‘ reference types|in C# 10. Although not
as prevalent as definin®wgferencas®pes, it is sometimes necessary to define
value types that behave in a fashion similar to the primitive types built into C#.

In defining how to create custom structures, this chapter also describes the
idiosyncrasies they may introduce.

Preface ™n xxvii

* Chapter 10, Well-Formed Types: This chapter discusses more advanced type
definition. It explains how to implement operators, such as + and casts, and

Page 2

Hello, World

The best way to learn a new programming language is to write code. The first
example is the classic HelloWorld program. In this program, you will display some
text to the screen.

Listing 1.1 shows the complete HelloWorld program; in the following sections,

you will compile and run the code.

Begin 9.0

LISTING 1.1: HelloWorld in C#2

Console.WriteLine("Hello. My name is Inigo Montoya.");

(A listing this simple requires a feature—top-level statements—enabled in C# 9.0
to help with learning C#. An alternative listing—arguably a more typical listing—

is shown later in Listing 1.6. See |Chapter 4 for more information about top-level

statements.)
Chapter 5

Pages 51-52:
the "Begin 11.0" and "End 11.0" in the sidebar should be changed to "Begin 10.0" and "End 10.0."
Additionally, this "Advanced Topic" does not cover the "using static directive" as indicated by the title.

Page 62: Based on C# 12.0 and .NET 8.0, in the "Advanced Topic: Round-Trip Formatting," both the
example and the output are incorrect. The entire "Advanced Topic" needs to be rewritten.

Page 70: Listing 2.16: New Lines within String Interpolation does not match the code and the title.

Page 102:

Console.WritelLine(uppercase);

2.24
This listing differs from Listing in two ways. First, rather than using the

explicit data type string for the declaration, Listing 3.3 uses var. The resultant
CIL code 1s 1dentical to using string explicitly. However, var indicates to the
compiler that it should infer the data type from the value assigned within the
declaration—in this case, the value returned by Console.ReadLine().

Second, the variables text and uppercase are initialized by their declarations.
Not doing so would result in an error at compile time. As mentioned earlier, the

compiler determines the data type of the inmitializing expression and declares the

4. Introduced in C# 3.0.

Tuples "= 103

Page 103:

|
Language Contrast: C++/Visual Basic/JavaScript—
void+, Variant, and var
An implicitly typed variable is not the equivalent of void* in C++, Variant in
Visual Basic, or var in JavaScript. In each of these cases, the variable
declaration is[restrictive |because the variable may be assigned a value of any
type, just as can be done in C# with a variable declaration of type object. In
contrast, var is definitively typed by the compiler; once established at
declaration, the type may not change, and type checks and member calls are
verified at compile time.

less restrictive
Tuples

On occasion, you will find it useful to combine data elements together. Consider, for
example, information about 4 country such as the poorest country in the world in
2022: Burundi, whose capital is Bujumbura, with a GDP per capita of $263.67.
Given the constructs we have established so far, we could store each data element in
individual variables, but the result would be no association of the data clements
together. That is, $263.67 would have no association with Burundi, except perhaps

by a common suffix or prefix in the variable names. Another option would be to

104 " Chapter 3: More with Data Types

Page 104-106, Table 3.1
change all 2017 to 2022

Page 110:
For completeness, the System.Value exists but will rarely be used, ¥J9: For completeness, the
System.ValueType exists but will rarely be used,

Page 114, Table 3.2, Forward Accessing an Array
change “// Retrieve second item from the end (Python)” to “// Retrieve third item from the end (Python)”

Page 119

The initialization follows the pattern in which there is an array of three elements
of type int[], and each element has the same size; in this example, the size is 3.
Note that the sizes of each int[] element must all be identical. The declaration

shown 1n Listing 3.16, therefore, is not valid.

int[,] cells = {
{1, e, 2, o},
{1, 2, e},
{1, 2},
{1}

}s

M 119

LisTiNG 3.16: A Multidishensional Array with Inconsistent Size, Causing an Error

// ERROR:

Representing tic-tac-toe does not require an integer in each h)osition. One

ch dimensi/bn must be consistently sized

alternative is to construct a separate virtual board for each player, with each board
containing a bool that indicates which positions the players selected. Listing 3.17

corresponds to a three-dimensional board.

Page 126, Listing 3.26, the last 2 statements:
// 6. C#, COBOL, Java, C++, TypeScript, Swift, Python, Lisp, JavaScript

Console.WriteLine($@"_..: {string.Join(", ", languages[..]) }");
// 7. C#, COBOL, Java, C++, TypeScript, Swift, Python, Lisp, JavaScript
Console.WriteLine($@" @..70: {string.Join(", ", languages[@..”0])}");

Page 130, Listing 3.28:
output not match source code

Page 139, Listing 4.2:
IESHEY2U.S debt, KREiEERARNEWorld Debt

Page 147:

decimal decimalNumber = 4.2M;
double doubleNumber1 = 0.1F * 42F;
double doubleNumber2 = 0.1D * 42D;
float floatNumber = 0.1F * 42F;

// 1. Display: 4.2 '= 4.2000002861023 - True
Console.WriteLine($"{decimalNumber} != {(decimal)doubleNumber1} - {decimalNumber !=
(decimal)doubleNumber1}");

I/ 2. Display: 4.2 1= 4.200000286102295 - True
Console.WriteLine($"{(double)decimalNumber} != {doubleNumber1} - {(double)decimalNumber !=
doubleNumber1}");

/I 3. Display: (float)4.2M != 4.2000003F - True
Console.WriteLine($"(float){(float)decimalNumber}M != {floatNumber}F - {(float)decimalNumber !=
floatNumber}");

/I 4. Display: 4.200000286102295 != 4.2 - True
Console.WriteLine($"{doubleNumber1} != {doubleNumber2} - {doubleNumber1 != doubleNumber2}");

/I'5. Display: 4.2000003F !=4.2D - True
Console.WriteLine($"{floatNumber}F != {doubleNumber2}D - {floatNumber != doubleNumber2}");

/1 6. Display: 4.199999809265137 != 4.2 - True
Console.WriteLine($"{(double)4.2F} != {4.2D} - {(double)4.2F != 4.2D}");

/ 7. Display: 4.2F 1= 4.2D - True
Console.WriteLine($"{4.2F}F != {4.2D}D - { 4.2F != 4.2D}");

Output:

4.2 1= 4.2000002861023 - True

4.2 1= 4.200000286102295 - True
e [(float)4.2M != 4.2000003F - True
e 4.200000286102295 != 4.2 - True
e [4.2000003F != 4.2D - True

e 4.199999809265137 != 4.2 - True

e 4.2F != 4.2D -True

Page 159-160:

160 ™= Chapter 4: Operators and Control Flow

// Input is less than or equal to 0
Console.WriteLine("Exiting...");
else
// Condition 2.
if (input < 9) //|line 20
// Input is less than 9
Console.WritelLine(
$"Tic-tac-toe has more than
" maximum turns.");

else
// Condition 3.
if (input > 9) //|line 26
// Input is greater than 9
Console.WritelLine(
$"Tic-tac-toe has fewer

" maximum turns.");
// Condition 4.

{input}" +

than {input}" +

else
// Input equals 9
Console.WritelLine(| // line 33
"Correct, tic-tac-toe " +
"has a maximum of 9 turns.");
OuTPUT 4.13

What 1s the maximum number of turns in
9
Correct,

tic-tac-toe? (Enter 0 to exit.):

tic-tac-toe has a maximum of 9 turns.

Assume the user enters 9 when prompted at

line 14.

Here is the execution path:

1. Condition 1. Check if input 1s less than 0. Since it is not, jump to Condition 2.

2. Condition 2: Check if input is less than 9. Since it is not, jump to Condition 3.

3. Condition 3: Check if input is greater than 9. Since it is not, jump to Condition

4.

Page 187:

QutpPuT 4.20
and = 4
or = 15
xor = 11

Combining a bitmap with a mask using something like fields &= mask clears
the bits in fields that are not set in the mask. The opposite, fields &= ~mask,
clears the bits in fields that are set in mask.

Bitwise Complement Operator (~) nint, nuint,

The bitwise complement operator takes the cgffiplement of each bit in the operand,
where the operand can be an int, uint,#long, or ulong. Tthe expression ~1,
therefore, returns the value with binary notation 1111 1111 1111 1111 1111
1111 1111 1110, and ~(1<<31) returns the number with binary notation 0111
1111 1111 1111 1111 111171 1111 1111

Control Flow Statements, Continued

Now that we’ve described Boolean expressions in more detail, we can more clearly
describe the control flow statements supported by C#. Many of these statements will
be familiar to experienced programmers, so you can skim this section looking for
details specific to C#. Note in particular the foreach loop, as it may be new to

many programimers.

188 ™= Chapter 4: Operators and Control Flow

Page 212-213:
Specifying Line Numbers (#line)

The #1ine directive controls on which line number the C# compiler reports an error
or warning. It is used predominantly by utilities and designers that emit C# code. In
Listing 4.62, the [actual line numbers|within the file appear on the left.

C# Preprocessor Directives "s 213

ISTING 4.62: The #1line Preprocessor Directive

#line 113 "TicTacToe.cs"
#warning "Same move allowed multiple times."
#line default

Including the #line directive causes the compiler to report the warning found
on line 125 as though it were on line 113, as shown in the compiler error message in

Output 4.30.

Page 234:
234 "s Chapter 5: Parameters and Methods

// See https://www.regular-expressions.info/ for

// more information.

const string pattern = $"""
(?<{firstName}>\w+)\s+((?2<{
initiall}>\w)\.\s+)?(7<{
lastName}>\w+)\s*

Console.WriteLine(

"Enter your full name (e.g. Inigo T. Montoya): ");
string name = Console.ReadlLine()!;

// No need to qualify RegEx type with

// System.Text.RegularExpressions because
// of the using directive above

Match match = Regex.Match(name, pattern);

if (match.Success)

{

Console.WriteLine(

$"{firstName}: {match.Groups[firstNamel]}");
Console.WritelLine(

$"{initial}: {match.Groups[initiall}");
Console.WritelLine(

$"{lastName}: {match.Groups[lastName]}");

OuTpPuT 5.2 The output does not match the code listing.

Hello, my name is Inigo Montoya

Page 236:
Global Using Directives

If you search the subdirectory of a C# 10.0 (or higher) project, you will notice there
is a file with the extension .GlobalUsing.g.cs, generally found in an obj
folder subdirectory, and it contains multiple global using directives such as those
found in Listing 5.9.

LisTING 5.9: Implicit Usings Generated Global Using Declaratives®

// <auto-generated/>

global using [global: :System;

global using [global: :System.Collections.Generic;
global using [global: :System.IO;

global using [global: {System.L1inq;

global using iglobal: :System.Net.Http;

global using iglobal: :System.Threading;

global using [global: (System.Threading.Tasks;

3. Althougﬂ removed from this listing for elucidation purposes, the generated global using
statements prefix the namespace with “global::” as in global using global::System.
Discussion of namespace alias qualifiers appears later in the section.

Page 239:
Using Directives "s 239

" ADVANCED TOPIC

Nested Using Directives
Not only can you have using directives at the top of a file, but you can also
include them at the top of a namespace declaration. For example, if a new

namespace, EssentialCSharp, were declared, it would be possible to add a using
declarative at the top of the namespace declaration (see Listing 5.12).

LISTING 5.12: Specifying the using Directive inside a Namespace Declaration

// The using directive imports all types from the
// specified namespace into the entire file
using System.Text.RegularExpressions;

public class Program L
I wrong listing

public static void Main()
{
VAT
// No need to qualify RegEx type with
// System.Text.RegularExpressions because
// of the using directive above

Match match = Regex.Match(name, pattern);
/A

The difference between placing the using directive at the top of a file and placing

Page 209:
Defining Preprocessor Symbols (#define, #undef)

You can define a preprocessor symbol in two ways. The first is with the #define
directive, as shown in Listing 4.58.

LISTING 4.58: A #define Example

#define CSHARP2PLUS

The second method uses the define command line. Output 4.27 demonstrates this

with Dotnet command-line interface.

OuTPUT 4.27

>dotnet.exe —de\Fine :CSHARP2PLUS TicTacToe.cs

\

no such switch?

210 "= Chapter 4: Operators and Control Flow

To add multiple definitions, separate them with a semicolon. The advantage of

the define compiler option is that no source code changes are required, so you may
refer https://mikehadlow.blogspot.com/2020/08/c-preprocessor-directive-symbols-from.html for a

workaround.

https://mikehadlow.blogspot.com/2020/08/c-preprocessor-directive-symbols-from.html

Page 259
With a parameter array declaration, it is possible to access each corresponding

argument as a member of the params array. In the Combine() method
implementation, you iterate over the elements of the paths array and call System
.I0.Path.Combine(). This method automatically combines the parts of the
path, appropriately using the platform-specific directory separator character. Note

that| PathEx.Combine() is for demonstration only|as it provides a rough
implementation of what System.I0.Path.Combine() does already.

There are a few notable characteristics of the parameter array:

There is no PathEx.Combine() in anywhere, not even
PathEx class.

260 "= Chapter 5: Parameters and Methods

* The parameter array is not necessarily the only parameter on a method.

Page 272
272 "= Chapter 5: Parameters and Methods

The C# specification includes additional rules governing implicit conversion
between byte, ushort, uint, ulong, and the other numeric types. In general,
though, it 1s better to use a cast to make the intended target method more

recognizable.

Basic Error Handling with Exceptions

This section examines how to handle error reporting via a mechanism known as
exception handling. With exception handling, a method can pass information about
an error to a calling method without using a return value or explicitly providing any
parameters to do so. Listing 5.26 with Output 5.10 contains a slight modification to

Listing |1.16+—the HeyYou program from Chapter 1. Instead of requesting the last

name of the um&%
1.18

LisTING 5.26: Converting a string to an int

public static void Main()

{

string? firstName;
string ageText;
int age;

Console.WritelLine("Hey you!");

Console.Write("Enter your first name: ");
firstName = Console.ReadLine();

Console.Write("Enter your age: ");
// Assume not null for clarity
ageText = Console.ReadlLine()!;

age = int.Parse(ageText);

Console.WritelLine(
$"Hi { firstName }! You are { age * 12 } months old.");

OutpPuT 5.10

Hey you!
Enter your first name: Inigo

(o)
I

Page 277, Figure 5.1 needs to be redone to align with Listing 5.27. an example(Chinese version):

Console.Write("IHHIAMRAIZATF: ");
firstName = Console.ReadlLine();
Console.Write("iFiAMREYFRE: ") ;

ageText = Console.ReadlLine ();

Trybhk:
age = int.Parse(ageText);
Console.WritelLine (

$"RIT, {firstName}! ¥ H{age * 12}
AKT.™);
FormatException Catchi:
Console.WritelLine (
$" RS { ageText }' AE—TAEK

HIEEE. ™);
result = 1;

i
FormatException

ALy

\ 4

Exception Catchtf:

Console.WritelLine (

fit HException
RETHY

$"Hi4EM: { exception.Message }");
result = 1;
Finally$:
Console.WritelLine (
$ "W, { firstName }. ");

!

return result;

!
I

Page 286
286 ™= Chapter 5: Parameters and Methods

if (is null) throw new ArgumentNullException(...)

You can accomplish this in a single statement using the null coalescing assignment

operator |[with a throw ArgumentNullException expression if the parameter
value 1s null (see Listing 5.32).

it'sa null coalescing operator

LisTING 5.32: Parameter Validation by TMmentNull Exception
httpsUrl = httpsUrl ?? /

throw new ArgumentNullException(nameof(httpsUrl));
fileName = fileName??

throw new ArgumentNullException(nameof(fileName));

VT

With NET 7.0, you can use the Argumenxception.ThrowaNull()
method (see Listing 5.33).

LisTING 5.33: Parameter Validation with ArgumenfException.ThrowIfNull()

ArgumentNullException.ThrowIfNull(httpsUrl);
ArgumentNullException.ThrowIfNull(fileName);

/.

Page 287
Basic Error Handling with Exceptions "= 287

Additional Parameter Validation

There are obviously a myriad of other type constraints that a method may have on its
parameters. Perhaps a string argument should not kae an empty string, should not be
comprised only of whitespace, or must have “HTTPS” as a prefix. Listing 5.34
displays the full DownloadSSSL() method, demonstrating this validation.

SSL
LisTING 5.34: Custom Parameter Validation

public class Program
{
public static int Main(string[] args)
{
int result = 0;
if(args.Length !'= 2)

Page 288

288 "m Chapter 5: Parameters and Methods

#endif

if ('httpsUrl.ToUpper().StartsWith("HTTPS"))
{

}

throw new ArgumentException("URL must start with 'HTTPS'.");

HttpClient client = new();
byte[] response =
client.GetByteArrayAsync(httpsUrl).Result;
client.Dispose();
File.WriteAllBytes(fileName!, response);
Console.WriteLine($"Downloaded '{fileName}' from '{httpsUrl}'.");

e

When using NET 7.0 or higher, you can rely on the ArgumentException
.ThrowIfNullOrEmpty() method to check for both null and an empty string.
And, if you invoke the string.Trim() method when invoking
ThrowIfNullOrEmpty(), you can throw an exception if the argument content is

only whitespace. (Admittedly, the exception message will not indicate whitespace

only 1s invalid.) The equivalent code for .NET 6.0 or earlier is shown in the |else

directive. #if
If the null, empty, and whitespace validation pass, Listing 5.34 has an if statement
that checks for the “HTTPS” prefix. If the validation fails, the resulting code throws

an Argum}entException, with a custom message describing the problem.

Introducing the nameof Operator () is not technically a type, return is.
When the parameter fails validation, it is necessary to throw an exception—

generally of |type ArgumentException() or ArgumentNullException()

Both exceptions take an argument of type string called paramName that identifies
the name of the parameter that is invalid. In Listing 5.33, we use the nameof
operator!! for this argument. The nameof operator takes an identifier, like the

httpsUrl variable, and returns a string representation of that name—ihl this case,
"httpsUrl"”.

11. Introduced in C# 6.0.

Page 312

312 " Chapter 6: Classes

/Ay

—

Once the write operations are completed, both the FileStream and the
StreamWriter need to be closed so that they are not left open indefinitely while
waiting for the garbage collector to run. Listing 6.13 does not include any error
handling, so if an exception is thrown,lneither Close() method +vill be called.

The load process is similar (see Listing 6.14 with Output 6.4).
no, there is no Close() method anymore. maybe a

LisTinG 6.14: Data Retrieval from a File I fi like "Essential C# 5.0"2 (see below)

Page 313

Using the this Keyword ™ 313

employee.Salary = reader.ReadlLine();

// Dispose the StreamReader and its Stream
reader.Dispose(); // Automatically closes the stream

return employee;
}

public class Program
{
public static void Main()

{
Employee employeel;

Employee employee2 = new();
employee2.SetName("Inigo", "Montoya");
employee2.Save();

// Modify employee2 after saving
IncreaseSalary(employee2);

// Load employeel from the saved version of employee2
employeel = DataStorage.Load("Inigo", "Montoya");

Console.WriteLine(
$"{ employeel.GetName() }: { employeel.Salary }");

}
T

QuTtpPuT 6.4

Name changed to 'Inigo Montoya'
Inigo Montoya:

The reverse of the save process appears in Listing 6.14, which uses a

StreamReader rather than a StreamWriter. Again, [Close() |needs to be

called on both FileStream and StreamReader once the data has been read.

Output 6.4 does not show any salary after Inigo Montoya: because Salary
was not set to Enough to survive on by a call to IncreaseSalary() until
after the call to Save().

Page 288
.ThrowIfNullOrEmpty() method to check for both null and an empty string.

And, if you invoke the string.Trim() method when invoking
ThrowIfNullOrEmpty(), you can throw an exception if the argument content is
only whitespace. (Admittedly, the exception message will not indicate whitespace
only is invalid.) The equivalent code for .NET 6.0 or earlier is shown in the else
directive.

If the null, empty, and whitespace validation pass, Listing 5.34 has an if statement
that checks for the “HTTPS” prefix. If the validation fails, the resulting code throws
an ArgumentException, with a custom message describing the problem.

Introducing the nameof Operator
When the parameter fails validation, it is necessary to throw an exception—
generally of type ArgumentException() or ArgumentNullException().

Both exceptions take an argument of type string called paramName that identifies
the name of the parameter that is invalid. In Listing| 5.33,| we use the nameof

operator!! for this argument. The nameof operator takes an identifier, like the
httpsUrl variable, and returns a string representation of that name—in this case,
"httpSUT].". 5327

11. Introduced in C# 6.0.

Basic Error Handling with Exceptions "= 289

Page 333

Notice in Listing 6.24 that the getters and setters that are part of the property
include the specialname metadata. This modifier is what IDEs, such as Visval
Studio, use as a flag to hide the members from IntelliSense.

An automatically implemented property is almost identical to one for which you
define the backing field explicitly. In place of the manually defined backing field, the
Cft compiler generates a field with the name <PropertyName>k_BackingField
in CIL. This generated field includes an attribute (see Chapter 18) called System
.Runtime.CompilerServices.CompilerGeneratedAttribute. Both the

getters and the setters are decorated with the same attribute because they, too, are

generated—with the same implementation as in [Listings 5.23 and 5.24.

Constructors

Now that you have added fields to a class and can store data, you need to consider
the validity of that data. As you saw in Listing 6.6, it is possible to instantiate an
object using the new operator. The result, however, is the ability to create an

employee with invalid data. Immediately following the assignment of employee,

334 "= Chapter 6: Classes

Begi

Page 336

public string FirstName { get; set; }
public string LastName { get; set; }
public string? Salary { get; set; } = "Not Enough";

VY

Developers should take care when using both assignment at declaration time and
assignment within constructors. Assignments within the constructor will occur after
any assignments arc made when a property or field is declared (such as string
Salary { get; set; } = "Not enough" in Listing Therefore,
assignment within a constructor will override any value assigned at declaration time.
This subtlety can lead to a misinterpretation of the code by a casual reader who
assumes the value after instantiation is the one assigned in the property or field
declaration. Therefore, it is worth considering a coding style that does not mix both
declaration assignment and constructor assignment for the satnk: field or property

Listing 6.28

Constructors "™ 337

Page 52
352 "= Chapter 6: Classes

Notice that since we don’t include an explicit constructor for Book, we rely on the
automatically generated default constructor to instantiate the book. This is ideal since
the required members define how to construct the object in place of any constructor.
Providing a constructor with parameters for the required members will result in
having to specify the values both as constructor arguments and, redundantly, in the
object initializer. A constructor with a Title parameter, for example, will result in
an instantiation like this:

Book book = new("A People’s History of the United States")
{

Title= "A People’s History of the United States",
Ishn="978-0062397348"

};

To avoid this redundancy, you can decorate a constructor with the

SetRequireParameters| attribute, instructing the compiler to disable all the

object initializer requirements when invoking the associated constructor. (Effectively,

the| SetRequireParameters lattribute instructs the compiler that the developer

will take care of setting all the required members so the compiler can ignore
checking for initialization assignment. Unfortunately, however, there is little to no
verification that such initialization did occur—the compiler doesn’t check. See

Listing 6.40 for an example of how to use the|SetsRequiredMembers attribute.

LisTING 6.40: Disabling required Object Initialization

[[SetsRequiredMembers] |
public Book(int id)
{

Td = id-

Listing 6.38(source code) & Page 352

issentialCSharp / src / Chapter06 / Listing06.38.RequiredProperties.cs (5

53 BenjaminMichaelis feat: Get NetCore Preprocessor Directive, Reference Assembly, and Pac... &8

Code

0 NN AW R

B e e
W N R oW

Blame 66 lines (6@ loc) - 1.3 KB

namespace AddisonWesley.Michaelis.EssentialCSharp.Chapter®6.Listing®6_38;

#if NET7_0_OR_GREATER

#region INCLUDE
Vv public class Book

{ 352 "™ Chapter 6: Classes
v public Book()
{

// Look up employee name. INotice that since we don’t include an explicit constructor for Book, Iwe rely on the
/...

automatically generated default constructor to instantiate the book. This is ideal since

¥

string? _Title;

Page 365-366

LisTiNG 6.49: Declaring a Static Constructor

public class Employee k
{
static Employee()
{
Random randomGenerator = new();
NextId = randomGenerator.lNext(101, 999);|

/ARy

366 " Chapter 6: Classes

public static int NextId = 42;
YA

Listing 6.49 assigns the initial value of NextId to be a random integer petween 100
and 1,000.| Because the initial value involves a method call, the NextId

mitialization code appears within a static constructor and not as part of the

declaration.

Page 367
Static Members ™ 367

might provide a performance improvement if initialization of static members is
expensive and 1s not needed before accessing a static field. For this reason, you

should consider |either initializing static fields inline rather than using a static
constructmEinitializing them at declaration time.

|
Guidelines

CONSIDER initializing static fields inline|rather than |explicitly
using static constructors Edeclaration assigned values.

confused..
Static Properties

You also can declare properties as static. For example, Listing 6.50 wraps the data for
the next ID into a property.

Page 388
When declaring a derived class, follow the class identifier with a colon and then
the base class, as Listing 7.1 demonstrates.

LisTinG 7.1: Deriving One Class from Another

public class Pdaltem

{

[DisallowNull]

public string? Name { get; set; }

public DateTime LastUpdated { get; set; }
}

// Define the Contact class as inheriting the PdaItem class
public class Contact : Pdaltem
{

public string? Address { get; set; }

public string? Phone { get; set; 1}

388 " Chapter 7: Inheritance

V7
h inherited

Listing 7.2 shows how to access the properties defined|in Contact.

LisTiNG 7.2: Using Inherited ﬂethodsl pjgpﬁﬁy

public class Program

{
public static void Main()
{
Contact contact = new();
contact.Name = "Inigo Montoya";
/7y
}
h

Even though Contact does not directly have a property called Name, all

Page 402-403
The third row is missing in Table 7.1.:

Activity

Later, Programmer A adds the
Name property, but instead of
implementing the getter as

she implements it as

LastName + ",

" + FirstName. Furthermore,
she doesn't define the property
as virtual, and she uses the
property ina DisplayName()
method.

FirstMame + " " + LastName,

Code
F
public c¢lass Person
i
public string Mame
i
get
{
return LastMame +« ", " = FirstMame;
1
set
string[] names = wvalue.Split(®, ");
S/ Error handling not shown
LastName = names[@];
FirstMame = names[1];
1
}
public static void Display(Person person)
{
// Display <LastMame>, <FirstMame:
Console.WriteLine(person.Name);
}
1

Page 417

Location:

LastName:

FirstName:

All Classes Derive from System.Object "= 417

Address: 221B Baker Street, London, England

Subject: Soccer tournament
Start: 7/18/2008 12:00:00 AM
End: 7/19/2008 12:00:00 AM
Estadio da Machava

Hercule
Poirot
Address: Apt 56B, Whitehaven Mansions, Sandhurst Sq, London

In this way, you can call the method on the base class, but the implementation is
specific to the derived class. Output 7.5 shows that the List() method from Listing
7.18 is able to successfully display both Contacts and

and display

them in a way tailored to each. The invocation of the abstract™getSummary()
method actually invokes the overriding method specific to the instance.

Appointments

All Classes Derive from System.Object

Given any class, whether a custom class or one built into the system, the methods
shown in Table 7.2 will be defined.

Page 419, Listing 7.20

32

33 v public class Program

34 {

35 v private static object? GetObjectById(string id)

36 {

37 #region EXCLUDE

38 if(id is null) throw new ArgumentNullException("id");

39

40 if (id.StartsWith(nameof(Employee)))

41 {

42 return new Employee("Inigo"”, “"Montoya",|id.Remove(@,nameof(Employee).Length));
43 }

44 else if (id.StartsWith(nameof(Person)))

45 { ?
46 return new Person("Inigo”, "Montoya™);

47 } _

48 return return id;

49 #endregion EXCLUDE

50 }

Page 427

Pattern Matching "= 427

_ => null,// Set the button to indicate an invalid value
}) is not null;

The order of precedence is not, and, or; thus the first two examples don’t
need parentheses. Parentheses, however, are allowed to change the default order of
precedence as demonstrated (arbitrarily) by match expressions in the switch
expression of Listin 7.25

Be aware that when using the or and not operators, you cannot also declare a
variable. For instance:

if (input is "data" or string text) { }

will result in an error: “CS8780: A variable may not be declared within a ‘not’ or ‘or’
pattern.” Doing so would result in ambiguity about whether initialization of text
occurred.

Page 429
Pattern Matching "= 429

In both Listing 7.27 and Listing 7.28, we pattern match against a tuple that is
populated with the length and the elements of args. In the first match expression,
we check for one argument and the action "cat"”. In the second match expression,
we cvaluate whether the first item in the array is equal to "encrypt”. In addition,

Listing 7.27 assigns the |third element in the tuple to the variable fileName if the
initial match expression evaluates to true. The switch statement in Listing 7.28

doesn’t make the variable assignment since the input operand of the switch

statement 1s the same for all match expressions. ?7?

Each element match can be a constant or a variable. Since the tuple is instantiated
before the is operator executes, we can’t use the "encrypt" scenario first because
args[FileName] would not be a valid index if the "cat" action was requested.

Positional Patterns (C# 8.0)

Building on the deconstructor construct introduced in C# 7.0 (see Chapter 6), C# 8.0
enables positional pattern matching with a syntax that closely matches tuple pattern
matching (see Listing 7.29).

LisTING 7.29: Positional Pattern Matching with the is Operator‘

using Svstem.Drawine:

Page 430

430 "= Chapter 7: Inheritance

Begin 9.0

b

The System.Drawing.Point type doesn’t have a deconstructor. However, we

are able to add one as an extension method, which satisfies the criteria for converting
the Point to a tuple of X and Y. The deconstructor 1s then used to match the order
of each comma-separated match expression in the pattern. In the example of
IsVisibleOnVGAScreen(), X is matched with >=0 and <=1920 and Y with
>=0 and <=1080. Similar range expressions are used with the switch

expression in GetQuadrant().

Property Patterns (C# 8.0 & 10.0)

With property patterns, the match expression is based on property names and values

of the data type 1dentified in the switch expression, as shown n Listing 7.30.

LisTING 7.30: Property Pattern Matching with the is Operator ?7?
public record class Employee
{

public int Id { get; set; }

public string Name { get; set; }

public string Role { get; set; }

public Employee(int id, string name, string role) =>

(Id, Name, Role) = (id, name, role);

t

public class Expenseltem

{
public int Id { get; set; }
public string ItemName { get; set; }
public decimal CostAmount { get; set; }
public DateTime ExpenseDate { get; set; }
public Employee Employee { get; set; }

public ExpenseItem(
int id, string name, decimal amount, DateTime date,
Employee employee) =>
(Id, Employee, ItemName, CostAmount, ExpenseDate) =
(id, employee, name, amount, date);

Page 432
432 "= Chapter 7: Inheritance

expression uses an expanded property pattern match syntax introduced in C# 10 and
identified by the dot notation that accesses subproperties (Length and Role).

The second match expression for Listing 7.30, { ItemName: { Length: > ©
}, Employee: {Role: "Manager" }, ExpenseDate: DateTime date },
1s also a property match expression (rather than an expanded property match
expression) but with a slightly different syntax. The property match expression was
mtroduced in C# 7.0 and is still supported, albeit with a warning, because the
expanded syntax 1s simpler and preferred in all cases.

This second match expression includes a property match for ExpenseDate for
which it declares a variable, date. While date 1s still used as part of thqe switch

filter, 1t appears in a when clause rather than the match expression.

When Clause

For all forms of constant and relational match expressions, it 1s necessary to use a
constant. This, however, can be restrictive given that frequently the comparative
operand 1s not known at compiler time. To avoid the restriction, C# 7.0 includes a
when clause mto which you can add any conditional expression (an expression that
returns a Boolean). ~

The code in Listing 7.30 declares a DateTime date variable to check that the

Expenseltem.ExpenseDate is no older than 30 days. However, because|age |is

dependent on the current date and time, the value isn’t constant, and we can’t use a
match expression. Instead, the code uses a when clause following the match
expression where the date wvalue 1is compared to DateTime.Now
.AddDays(-30). The when clause provides a catchall location for (optionally)

Page 433

Pattern Matching "= 433

Pattern Matching with Unrelated Types

An 1nteresting capability of pattern matching 1s that it becomes possible

to extract

data from unrelated types and morph the data into a common format. Listing 7.31

provides an example.

LisTING 7.31: Pattern Matching within a switch Expression

public static string? CompositeFormatDate(
object input, string compositeFormatString) =>
input switch
{
DateTime
{ Year: int year, Month: int month, Day: int day }
=> (year, month, day),
DateTimeOffset
{ Year: int year, Month: int month, Day: int day }
=> (year, month, day),
DateOnly
{ Year: int year, Month: int month, Day: int day }
=> (year, month, day),
string dateText => DateTime.TryParse(
dateText, out DateTime dateTime) ?

(dateTime.Year, dateTime.Month, dateTime.Day) :
// default ((int Year, int Month, int Day)?)
// preferable but not covered until Chapter 12.
((int Year, int Month, int Day)?) null,
_ => null
} is (int, int, int) date ? string.Format(
compositeFormatString, date.Year, date.Month, date.Day)

: null;

The first match expression of the switch expression in Listing [7.32

uses type

pattern matching (C# 7.0) to check whether the mnput is of type DateTime. If the

result is true, it passes the result to the property pattern matching to declare and

assign the values year, month, and day; it then uses those variables in a tuple

expression that returns the tuple (year, month, day). The DateTimeOffset

and DateOnly match expressions work the same way.

Given a match on the string match expression, if TryParse() is

unsuccessful, we return a default((int Year, int Month, int

2. See Chapter 12 for more mformation.

Day)?),2

7.31

Page 453

nuLL =» 1,
Contact contact when Referencekquals(this, obj) =>» @,
Contact { LastMame: string lastName }
when LastMame.CompareTo(lastName) != @ =»
LastName.CompareTo(lastName},
Contact { FirstName: string firstMame }
when FirstMame.CompareTo(firstName) != 8 =>
FirstName.CompareTo(firstName),
Contact _ == 8,
_ =>» throw new ArgumentException(
$"The parameter is not a value of type { nameof(Contact) }",
nameof{obj})
b

#endregion

firegion IListable Members
I strini?[] IListable.CellValues |

get
{

?aturn string?[]
FirstRame,
LastNape,
Phone,
Address
b
t
}

f#tendregion

P/

Interface Implementation "= 453

Once a class declares that it implements an interface, all (abstract?) members of
the interface must be implemented. Ak abstract class 1s permitted to supply an
abstract implementation of an interface member. A non-abstract implementation may
throw a NotImplementedException type exception in the method body, but an
implementation of the member must alwaysibe supplied.

One important characteristic of interfaces 1s that they can never be instantiated:
you cannot use New to create an interfacd, so interfaces do not have instance
constructors or finalizers. Interface instances\are available only by instantiating a
type that implements the interface. Furthermbre, interfaces cannot include static
members.3 One key interface purpose is polymdrphism, and polymorphism without
an instance of the implementing type has little va

Each (non-implemented?) interface member is\abstract, forcing the derived class
to implement 1t. Therefore, it 1s not possible to use the abstract modifier on mnterface
members explicitly.?

T 1 a” s ~ 1 - . a1

When implementng an inferiace memoer 1n a TVPe. [here are Iwo ways 1o ao so:

explicitly or implicitly. [So far, we’ve seen only mmplicit implementations, fwhere the
type member that mmplements the mterface member 1s a public member of the

implementing type.

Explicit Member Implementation

Explicitly implemented methods are available only by calling them through the
mnterface itself; this 1s typically achieved by casting an object to the interface. For
example, to call TListable.CellValues in Listing 8 4. you must first cast the
contactto IListable because of CellValues’ explicit implementation.

LisTinG 8.4: Calling Explicit Interface Member Implementations

string?[] values;
Contact contact = new("Inigo Montoya");

Page 454
454 "= Chapter 8: Interfaces

/ey

// ERROR: Unable to call .CellValues directly

Va4 on a contact

[~Values = contact.CellValues; | should be commented out because

the #if COMPILEERROR directive is
not shown in the book

// First cast to IListable
values = ((IListable)contact).CellValues;

/ey

The cast and the call to CellValues occur within the same statement in this case.
Alternatively, you could assign contact to an IListable variable before calling
CellVvalues.

To declare an explicit interface member impl}ementation, prefix the member name
with the interface name (see Listing 8.5).

Page 455
Interface Implementation "= 455

associated with the interface, there is no need to modify them with virtual,
override, or public. In fact, these modifiers are not allowed. The method is not
treated as a public member of the class, so marking it as public would be
misleading.

Note that even though the override keyword is not allowed on an interface, we
will still use the term “override” when referring to members that implement the

interface-defined signature.

Implicit Member Implementation 8.3

Notice that CompareTo() in Listing[8.5]does not include the IComparable prefix;
it is implemented implicitly. With implicit member implementation, it iS necessary
only for the member to be public and for the member’s signature to match the
interface member’s signature. Interface member implementation does not require use
of the override keyword or any indication that this member is tied to the interface.
Furthermore, since the member is declared just like any other class member, code
that calls implicitly implemented members can do so directly, just as it would any
other class member:

Page 470
470 "= Chapter 8: Interfaces

TaeLE 8.1: Default Interface Refactoring Features

C# 8.0-Introduced Interface
Construct

Sample Code

Static Members

The ability to define static
members on the interface
including fields, constructors, and
methods. (This includes support
for defining a static Main method
—an entry point into your
program.) The default
accessibility for static members on
interfaces 1s public.

public interface ISamplelnterface
{
private static string? _Field;
public static string? Field

{
get => _Field;

private set => _Field = value; }

static IsampleInterface() =>

Field "Nelson Mandela";

public static string? GetField() => Field;
}

Implemented Instance
Properties and Methods
You can define implemented

properties and members on
mterfaces. Since mstance fields
are not supported, properties
cannot work agamst backing
fields. Also, without instance
fields support, there is no
automatically implemented
property support.

Note that to access a default
implemented property, it 1s
necessary to cast to the interface
containing the member. The class
(Person) does not have the
default interface member available

public interface IPerson
{
// Standard abstract property definitions
string FirstName { get; set; }
string LastName { get; set; }
Ftring MiddleName { get; set;
// Implemented instance properties and methods
public string Name => GetName();

public string GetName() =>

$"{FirstName} {LastNamel}";

I3

public class Person :IPerson

{
/] ...

3

public class Program
{
public static void Main()
{
Person inigo
Console.Write(
((IPerson)inigo).Name);

new Person("Inigo", "Montoya");

accessibility of the code. Note,
however, that the compiler-
generated CIL code 1s 1dentical
with or without the public access
modifier.

N }
unless it is implemented. }
public Access Modifier public interface IPerson

i {
The default for all mstance? // All members are public by default
interface members. Use this string FirstName { get; set; }
keyword to help clarify the public string LastName { get; set; }
string Initials =>

$"{FirstName[0]}{LastName[0O]}";
public string Name => GetName();
public string GetName() =>
$"{FirstName} {LastName}";
}

n remove this line

Page 471

private members must include
an implementation.

internal Access Modifier
internal members are only
visible from within the same
assembly in which they are
declared.

public interface IPerson

string FirstName { get; set; }
string LastName { get; set; }
string Name => GetName();
internal string GetName() |=>
$"{FirstName} {LastName}";

}

—

private protected |Access
odirier

AT SUper Set of privace and |

protected: private
protected members are visible
from within the same assembly
and from within other interfaces
that derive from the containing
mterface. Like protected
members, classes external to the
assembly cannot see protected
internal members.

public interface IPerson
{
string FirstName { get; set; }
string LastName { get; set; }

Istring Name => GetName();
protected internal jstring GetName() =>

$"{FirstName} {LastName}";
}

472 " Chapter 8: Interfaces

TaBLE 8.1: Default Interface Refactoring Features (continued)

C# 8.0-Introduced Interface
Construct

Sample Code

private protected Access
Modifier {
Accessing a private

protected member is only

IPerson? person =

class Program

static void Main()

null;

Page 472
472 "= Chapter 8: Interfaces

TABLE 8.1: Default Interface Refactoring Features (continued)

C# 8.0—Introduced Interface Sample Code
Construct

private protected Access class Program

Modifier i _ _
Accessing a private ?tatlc void Main()
protected member is only IPerson? person = null;
possible from the containing // Non-deriving classes cannot call
interf: interf: that deri // private protected member.
interface or interfaces that derive 7/ = person?.GetName();
from the implementing interface. |console.WriteLine(person);
Even classes implanting‘ the {
interface canfiot access a private public interface IPerson
protected member, as {
demonstrated by the string FirstName { get; }
. i string LastName { get; }
PersonTitle property in string Name => GetName();
Person. private protected string GetName() =>
$"{FirstName} {LastName}";
}
public interface IEmployee: IPerson
{

int EmpoyeelId => GetName().GetHashCode();

public class Person : IPerson
{
public Person(

string firstName, string lastName)
{
FirstName = firstName 27

throw new ArgumentNullException(nameof(firstName));
LastName = lastName 7?7

throw new ArgumentNullException(nameof(lastName));
} . .
public string FirstName { get; } implementing
public string LastName { get; } classes'
// private protected interface me@ﬁg;;

// are not_accessible in|derived classes. |

// public [int|PersonTitle =>

// GetName().ToUpp ; .

} why int?

Page 473
1[628f53b1fdd71e3fa3e280bb4109fc41.png](:/a574014127ff4e12a600d8db37c29f58

Page 479
Versioning "= 479

QuTPUT 8.3

Invoking ((IExecuteProcessActivity)activity).Run()...
IWorkflowActivity.Start()...
ExecuteProcessActivity.RedirectStandardInout()...
ExecuteProcessActivity.IExecuteProcessActivity.ExecutProcess()...
IExecuteProcessActivity.RestoreStandardInOut()...
IWorkflowActivity.Stop()..

Invoking activity.Run()...
Executing non-polymorphic Run() with process 'dotnet'.

Notice that IWorkflowActivity.Run() is sealed and, therefore, not virtual.
This prevents any derived types from changing its implementation. Any invocation of
Run(), given a IWorkflowActivity type, will always execute the
IWorkflowActivity implementation. IExecuteProcessActivity

IWorkflowActivity’s Start() and St‘op() methods are private, so they

are invisible to all other types. Even though|IExecutProcessActivity [seemingly

has start/stop-type activities, IWorkflowActivity doesn’t allow for replacing its
implementations.

IWorkflowActivity defines a protected InternalRun() method that allows
IExecuteProcessActivity (and ExecuteProcessActivity, if desirable) to
overload it. However, notice that no member of ExecuteProcessActivity can
invoke InternalRun(). Perhaps that method should never be run out of sequence
from Start() and Stop(), so only an interface (IWorkflowActivity or
IExecuteProcessActivity) in the hierarchy is allowed to mvoke the protected
member. ExecuteProcess()

All 1interface members that are pr ed can override any default interface

pg:itly. For example, Dboth the

member 1f they do ex
RedirectStandardInOu
on ExecuteProces
And, like with
iterface
EX

RestoreStandardInOut(), even though they are implemented on the same type:

and| RestoreStandardInOut()| implementations

Ctivity are prefixed with IExecuteProcessActivity.
¢ protected InternalRun() method, the type implementing the
cannot mvoke the protected members; for example,
UteProcessActivity can’t invoke RedirectStandardInOut() and ',

Even though only one of them 1s explicitly declared as virtual, both
RedirectStandardInOut() and RestoreStandardInOut() are wvirtual

Page 487

i1 9n

Introducing Structs and Records

You have used value types throughout this book: for example, int 1s a value type.
This chapter discusses not only using value types but also defining custom value
types. One of the key concepts for a value type is the ability to compare mstances for
the same value, a concept also possible on reference types. However, rather than

coding this feature from scratch, C# 9.0 and 10.0 provide shortcuts via the record

construct using a record struct and a record class, respectively.| This chapter explores

structs, records, and a specific value type called an enum.
using a record class and a record struct, respectively.

1. Reference Equality
4. Overriding versus

object Members Value Equality

_ Introducing
Converting between 5. Boxing Structs and 2. Record Structs
Enums and Strings Records
6. Enums

3. Record Classes

Enums as Flags

While there are noticeable complications to correctly implementing custom-built
structs, they are relatively rare. They obviously play an important role within C#
development, but the number of custom-built structs declared by typical developers
1s usually tiny compared to the number of custom-built classes. Heavy use of
custom-built structs i1s most common in code intended to interoperate with

unmanaged code. Furthermore, they should not be defined unless a single value

"= 487

Page 488
"™ BEGINNER TOPIC

Categories of Types
All types discussed so far have fallen into one of two categories: reference types

and value types. The differences between the types in each category stem from
differences in copying strategies, which in turn result in each type being stored
differently in memory. As a review, this Beginner Topic reintroduces the value type/

reference type discussion for those readers who are unfamiliar with these issues.

Value Types

Variables of value types directly contain their values, as shown in Figure 9.1. The
variable name is associated directly with the storage location in memory where the
value is stored. Because of this, when a second variable is assigned the value of an
original variable, a copy of the original variable’s value is made to the storage
location associated with the second variable. Two variables never refer to the same
storage location (unless one or both are out or ref parameters, which are, by
definition, aliases for another variable). Changing the value of the original variable
will not affect the value in the second variable, because each variable is associated
with a different storage location. Consequently, changing the value of one value type

variable cannot affect the value of any other value type variable.

could be succinctly rephrased as :
"Modifying the value of one value type variable won't affect
another, as each has a separate storage location."

Chapter 9: Introducing Structs and Records "= 489

Page 493

"= NOTE

Calling ReferenceEquals() on value types will always return false.

While value types can never be reference equal, a reference type can support
value equals. object includes a static method called ReferenceEquals() that
checks whether the two arguments are identical—reference equal. In addition,
object defines a virtual Equals() method that, by default, relies on
Referencekquals() for reference types. However, this Equals() meth\od can
be customized (on both reference types and value types) so that they implement
value equality rather than reference.

In fact, you should always override Equals() on value types because otherwise
you would be left with the default implementation that compares only the first field
for value equality. This, however, is insufficient. If a value type had three properties,
for example, then checking for value equality by comparing only the first one would
likely be inadequate. For example, given an Angle object, a comparison of the first

property (Degrees) is not adequate. Two Angles are equal only if Degrees,

sure? from MSDN document:

Remarks

The ValueType.Equals(Object) method overrides Object.Equals(Object) and provides the default implementation

equality for all value types in the .NET Framework.

. The default implementation calls Object.Equals(Object) on feach field| of the current instance and ebj and returns
494 "a Chapter 9: Introdufging

<all fields are equal.

Q Tip

Particularly if your value type contains fields that are reference types, you should override the Equals(Object)

method. This can improve performance and enable you to more closely represent the meaning of equality for

type

Page 499

Structs "= 499

9.2 94

From the one line of code in Listing 9.1 Listing shows a significant amount of
code 1s generated. To start, the Angle 1s not a class but a struct, and the record

contextual keyword dropped. In C#, to define a custom value type it must be a struct.

And, while C# allows you to write the entire struct from scratch as demonstrated by

9.0°s record keyword jumpstarts much of the boilerplate code such
that there 1s no longérany._reason not to use the record keyword to start, especially
s-of all the generated code, thus overriding the
94

Note that in C# 9.0, the record keyword without the struct keyword was all that

since you can define custom versio
default generated implementations as needed.

the compiler allowed. However, in C# 10.0 (with the introduction of records for
structs), the explicit declaration of record class was added. For clarity, we
recommend using record class always, rather than the abbreviated record

-only syntax.

|
Guidelines

DO use record struct when declaring a struct (C# 10.0).

DO use record class (C# 10.0) for clarity, rather than the
abbreviated record-only syntax.

All value types are implicitly sealed (you can’t derive from them). In addition, all
non-enum value types (enums are discussed later in the chapter) derive from System
.ValueType. Consequently, the inheritance chain for structs is always from
object to System.ValueType to the custom struct.

System.ValueType brings with it the behavior of value types by overriding
all the wvirtual methods of object: Equals(), ToString(), and
GetHashCode(). However, this implantation is generally not sufficient, leaving
the developer with the responsibility of further specializing each of these methods—
of course, that i1s until C# 10.0 and the introduction of the record modifier, where

Begin 10.0

Page 507

Records " 507

supporting the concept of read-only access to members, developers declare the
behavioral intent of whether a member can modify the object instance. Note that
properties that are not automatically implemented can use the readonly modifier
on either the getter or the setter (although the latter would be strange). To decorate
both, the readonly modifier would be placed on the property itself, rather than on
the getter and setter individually.

While allowable, using the readonly modifier on struct members is redundant
when the struct is read-only. However, favor read-only ({get;}) or init-only

setter ({get;init;}) automatically implemented properties over fields within -
End 8.0
structs.

[|
Guidelines

DO use the readonly modifier on a struct definition, making
value types immutable.

DO use read-only or init-only setter automatically implemented
properties rather than fields within structs.

Remarkably, the tuple (System.ValueTuple) is one example that breaks the
immutable guideline. To understand why it is an exception, see https:/
intellitect.com/Why TupleBreaks TheImmutableRuleshttps://Intelli Tect.com/
WhyTupleBreaksThelmmutableRules.

Page 508

Pr e sl e e L My e

Cloning a record struct 1s a memory copy, the same as when creating a copy to
mvoke a method with pass by value. For this reason, you can’t change the
mmplementation for cloning a record struct. 96

For record classes, the process 1s slightly different. The C# compiler generates a
hidden Clone() method (shown in Listing m that i turn mvokes the copy |

donstructor with a parameter for the source instance| You can also view that same
code in Listing 9.11:

LisTiNG 9.11: Cloning Record Classes via the Clone Method

// Actual name in IL is "<Clone>$". However,
// you can't add a Clone method to a record.
public Coordinate Clone() => new(this);

?rotected Coordinate(Coordinate original) could be reduced to one sehtence

Longitude = original.Longitude;
Latitude = original.Latitude;

| The clone method 1n turn calls the copy corfstructon Note that in the case where the

object initializer syntax is used, the assigned property cannot be read-only (either a
setter or an init-only setter is required). Also, the Clone() method uses a special

non-C#—compliant name, making it accessible only via the with operator. If you want

4. A constructor that takes single parameter the containing type. See Chapter 6‘.

of

Records " 509

Page 509
Records ™= 509

to customize the clone behavior, however, you can provide your own implementation
of the copy constructor.

All increments by 0.1
Record Constructors

Note that the record declaration of Listing| 9.1| looks virtually identical to the
constructor signature in Listing Similarly, with the record class associated code

n Listin and its equivalent C#-generated equivalent in Listing |9.5, |a record

declaration and its positional parameters provide the structure for the C# compiler to

generate a constructor with an equivalent-looking signature.

As with the properties themselves, one minor peculiarity with the record 1s that
the positional parameters are, by convention, PascalCase, and, therefore, so are the
parameters for the constructor. (Consequently, when initializing the properties, the
generated constructor code uses the this qualifier to distinguish the parameters

from the properties.)
You can add additional constructors to the record’s definition. For example, you

could provide a constructor that has strings rather than integers as parameters, as

shown in Listing 9.12:

LisTinG 9.12: Adding Additional Record Constructors

public Angle(
string degrees, string minutes, string seconds)
: this(int.Parse(degrees),
int.Parse(minutes),
int.Parse(seconds))

{1

The implementation of an additional constructor uses the same syntax as any other
constructor. The only additional constraint is that it must invoke the this
constructor itializer—1t must call the record-generated constructor or another
constructor that calls the record-generated constructor. This ensures that the
initialization of the positional parameter-generated properties are all initialized.

Record Struct Initialization

Prior to Ci# 10.0, no default constructor could be defined. Regardless, if not explicitly

instantiating a struct via the new operator’s call to the constructor, all data contained

Page 510-511

CONSLIUCLOLS O HICIHIIDCT HIUALLZdUOIL dL JCCldIdOIL LIIC,
Prior to C# 11.0, every constructor in a struct must initialize all fields (and
read-only, automatically implemented properties®) within the struct. Failure to

Begin 11.0

initialize all data within the struct causes a compile-time error in C# 10.0 and earlier:

CS0171: Field must be fully assigned before control is returned to
the caller. Consider updating to language version '11.0'
to auto-default the field.

Because of the struct’s field initialization requirement, the [succinctness of

field declaration,| automatically implemented property support, and the

guideline to avoid accesying fields from outside of their wrapping property, you

5. Enabled starting in C# 10.0
6. Initialization via a read-only, automati®glly implemented property is sufficient starting in C# 6.0,
because the backing field 1s unknown and if\initialization would not be possible otherwise.

Records ™= 511

should|favor read-only, automatically implemented properties over fields |within

structs.

Page 512
f

This enables pattern matching like that used in Listing|9.2 (displayed again in Listing
9.15):

9.3
LisTING 9.15: Pattern Matching

if (angle is (int, int, int, string) angleData)
{

Y/
3

Overriding object Members "= 513

Page 513

Overriding object Members "= 513

Overriding object Members

Chapter 6 discussed how all classes and structs ultimately derive from object.
In addition, it reviewed each method available on object and discussed how some
of them are virtual. This section discusses the details concerning overriding these
virtual methods. Doing so is automatic for records, but the generated code also
provides an example of what is required 1if you choose to customize the generated

code or implement an override on a non-record type implementation.

Overriding ToString()

By default, calling ToString() on any object will return the fully qualified name
of the object type. Calling ToString() on a System.IO.FileStream object
will return the string System.I0.FileStream, for example. For some classes,
however, ToString() can be more meaningful. On string, for example,

ToString() returns the string value itself. Similarly, when invoking ToString()

on an Angle (Listing 9.1)), the result returns:

Angle { Degrees = 90, Minutes = @, Seconds = ©, Name = }

(This also happens to be the output of Listing ++.1

Write methods such as System.Console.WritelLine() and System
.Diagnostics.Trace.Write() call an object’s ToString() method,” so
overriding the method often outputs more meaningful information than the default
implementation.

Overriding ToString() requires nothing more than declaring the ToString()
method as override and returning a string. Take Listing 9.16 for example:

LisTING 9.16: Overriding the ToString Method

public override string ToString()

{
string prefix =
string.IsNullOrWhiteSpace(Name) ? string.Empty : Name + ": ";

Page 519

Overriding object Members "= 519

AVOID including mutable data when overriding the equality-
related members on mutable reference types or if the
implementation would be significantly slower with such
overriding.

DO implement all the equality-related methods when
implementing IEquatable.

s ADVANCED TOPIC

Overriding GetHashCode()
If you rely on a record construct, GetHashCode() is automatically implemented for

you as part of the value equality implementation (see Listing and Listing |9.5).

Without the record implementation, you have to implement GetHashCode() on
your own, however, if you are providing an equality implementation. Even with a
record, if you customize the Equals() implementation, you will likely want to
override GetHashCode() to use a similar set of values as the new Equals()
implementation. And, if you override only Equals() and not GetHashCode(),
you will have a warning that:

CS0659: '<Class Name>' overrides Object.Equals(object o) but
does not override Object.GetHashCode(),

In other words, when not leveraging the record construct, overriding equals requires
that you also override GetHashCode().

The purpose of the hash code is to efficiently balance a hash table by generating
a number that corresponds to the value of an object. And, while there are numerous
guidelines (see https://bit.ly/39yP8Im for a discussion), the easiest approach is as

follows:

1. Rely on the record generated implementation (see Listingl 9.2). If you need to
override GetHashCode(), you are probably overriding Equals()and using a

record 1s the best approach by default.

Begin 10.0

Page 520
520 "= Chapter 9: Introducing Structs and Records

2. Call System.HashCode’s Combine() method, specifying each of the
identifying fields (see Listing 9.22):

LisTiNnGg 9.22: Overriding GetHashCode with Combine Method

public override int GetHashCode() =>
HashCode.Combine(Degrees, Minutes, Seconds);

3. Invoke ValueTuple’s GetHashCode() method using the fields that produce
your object’s uniqueness as the tuple elements, as demonstrated i Listing 9.23.
(If the 1dentifying fields are numbers, be wary of mistakenly using the fields
themselves rather than their hash code values.)

LisTing 9.23: Overriding GetHashCode with Combine Method

public override int GetHashCode() =>
(Degrees, Minutes, Seconds).GetHashCode();

4. ValueTuple invokes HashCode.Combine(); thus, it may be easier to
remember that you can adequately create a ValueTuple with the same
identifying fields and invoke the resulting tuple’s GetHashCode() member

In summary, use a record if overriding GetHashCode() and Equals() unless

there 1s a strong reason not to (such as an older version of C# in which records are
not available).

Fortunately, once you have determined that you need GetHashCode(), you can
follow some well-established GetHashCode() implementation principles:

* Required: Equal objects must have equal hash codes (if a.Equals(b),
then a.GetHashCode() == b.GetHashCode()).

* Required: GetHashCode()’s returns should be constant (the same value),
even if the object’s data changes. In many cases, you should cache the method
return to enforce this constraint. However, when caching the value, be sure not
to use the hash code when checking equality; if you do, two identical objects
—one with a cached hash code of changed identity properties—will not
return the correct result.

Page 526

526 "= Chapter 9: Introducing Structs and Records 9.25

317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465,
14930352, 24157817, 39088169, 63245986, 102334155, 165580141,

The code shown in Listing when compiled, produces five box instructions

and three unbox instructions in the resultant CIL.

Page 529
Boxing "m 529

Angle angle = new(25, 58, 23);

// Example 1: Simple box operation

object objectAngle = angle; // Box
Console.Write(((Angle)objectAngle).Degrees);

// Example 2: Unbox, modify unboxed value,
V74 and discard value
((Angle)objectAngle).MoveTo
(26, 58, 23);
Console.Write(", " + ((Angle)objectAngle).Degrees);

// Example 3: Box, modify boxed value,

S/ and discard reference to box
((IAngle)angle).MoveTo(26, 58, 23);
Console.Write(", " + ((Angle)angle).Degrees);

// Example 4: Modify boxed value directly
((IAngle)objectAngle).MoveTo(26, 58, 23);

Console.WriteLine(", " + ((Angle)objectAngle).Degrees);
/ATy
t
h
OuTtpPuT 9.2 9.27
25, 25|, 25, 26

Listing uses the Angle struct and TAngle interface. Note also that the
IAngle.MoveTo() interface changes Angle to be mutable. This change brings
out some of the idiosyncrasies of mutable value types and, in so doing, demonstrates
the importance of the guideline that advocates making structs immutable.

In Example 1 of Listing[9.T1] after you initialize angle, you then box it into a
variable called objectAngle. Next, Example 2 calls MoveTo() to change
_Degrees to 26. However, as the output demonstrates, no change actually occurs
the first time. The problem is that to call MoveTo(), the compiler unboxes
objectAngle and (by definition) makes a copy of the value. Value types are copied
by value—that 1s why they are called value types. Although the resultant value is
successfully modified at execution time, this copy of the value is discarded and no

change occurs on the heap location referenced by objectAngle.

Page 535
Enums "m 535

is assigned 11, the value assigned to Connected. (In this case, you do not need to

LISTING 9.31: Defining an Enum Type

enum ConnectionState : short

{
Disconnected,
Connecting = 10,
Connected,
Joined = Connected,
Disconnecting

}

prefix Connected with the enum name, since it appears within its scope.)
Disconnectingis 12.

An enum always has an underlying type, which may be any integral type other
than char. In fact, the enum type’s performance is identical to that of the
underlying type. By default, the underlying value type is int, but you can specify a
different type using inheritance type syntax. Instead of int, for example, Listing

9.31 1 9,15 juses a short. For consistency, the syntax for enums emulates the syntax of

inheritance, but it doesn’t actually create an inheritance relationship. The base class
for all enums 1s System.Enum, which in turn 1is derived from System

.ValueType. Furthermore, these enums are sealed; you can’t derive from an

existing enum type to add more members.

|
Guidelines

Page 545

Summary "= 545

and performance advantages of value types. Programmers should not be overly
concerned about using value types. Value types permeate virtually every chapter of
this book, yet the idiosyncrasies associated with them come into play infrequently.
We have staged the code surrounding each issue to demonstrate the concern, but in
reality, these types of patterns rarely occur. The key to avoiding most of them is to
follow the guideline of not creating mutable value types—and following this
constraint explains why you don’t encounter them within the built-in value types.

Perhaps the only issue to occur with some frequency is repetitive boxing
operations within loops. However, generics greatly reduce boxing, and even without
them, performance is rarely affected enough to warrant their avoidance until a
particular algorithm with boxing is identified as a bottleneck.

This chapter also introduced enums. Enumerated types are a standard construct
available in many programming languages. They help improve both API usability
and code readability.

Chapter 10 presents more guidelines for creating well-formed types—both value
types and reference types. It begins by defining operator-overloading methods. These

pply to both structs and classes, but they are somewhat more important
when completing a struct definition and making it well formed.

Just a reminder, the section "Overriding object
Members" has been moved to Chapter 9.

Page 551

OuTtpPuT 10.1

51° 52' @ E -1° -20' @ N
48° 52' @ E -2° -20' @ N
51° 52' @ E -1° -20' @ N

For Coordinate, you implement the — and + operators to return coordinate
locations after adding/subtracting Arc. This allows you to string multiple operators
and operands together, as in result = ((coordinatel + arcl) + arc2) =+
arc3. Moreover, by supporting the same operators (+/-) on Arc (see Listing

10.4 later in this chapter), you could eliminate the parentheses. This approach works

because the result of th+ first operand (arcl + arc2) |is another Arc, which you
?

can then add to the next operand of type Arc or Coordinate.

In contrast, consider what would happen if you provided a — opedator that had
two Coordinates as parameters and returned a double corresponding to the
distance between the two coordinates. Adding a double to a Coordinate is
undefined, so you could not string together operators and operands. Caution is in
order when defining operators that return a different type, because doing so is

counterintuitive.

552 "= Chapter 10: Well-Formed Types

Combining Assignment with Binary Operators (+=, -=, *=, /=, %=,
&=y uai)

Page 563
Referencing Other Assemblies "= 563

ﬂl HelloWorld - Microsoft Visual Studio X' &' | Quick Launch (Ctrl+Q) P - O X
File Edit View Project Build Debug Team Tools Architecture Test Analyze Mark Michaelis ~ -
Window Help

=@ ~Q |~ ' H f = 0" ~| Debug - AnyCPU = P HelloWorld ‘| yo =

NuGet: HelloWorld & X JGTIETRe

Browse Installed Updates NuGet Package Manager: HelloWorld

laio|dx3 1emss
suonesyioN

Microsoft.Extensions.CommandLineUtils X - G D Include prerelease Package source: inuget.c

xoq|og)

' Microsoft.Extensions

Microsoft.Extensions.CommandLineUtils v1.1.1

Command-line parsing APl. Commonly used types:
Microsoft Extensions.CommandLineUtils. Command... Version: | Latest stable 1.1.1 ~

Jaio|dx3 uonnjos

—
™
n
il
m
o

g5
2
®

Net20.Extensions.CommandLineUtils by s v1.10

sas0)dx3 weay

[Adaptation for .NET 2.0 Command-line parsing API. (v) Options

C"Helperﬁ by Henrik Ravn, 2.32K downloads ~ v1.1.2.38 = Description

padoiy

Error List Output Task Runner Explorer

[] Ready #£ 0 4 HelloWorld ' master ~

Ficure 10.2: The Browse filter

logger.LogInformation($@"Hospital Emergency Codes: = '{
string.Join("', '", args)}'");
YAy

logger.LogWarning("This is a test of the emergency...");

Zans
} Update Figure 10.2 to match the new

Microsoft-Extensions:Logging:Console——

library.

Page 568-569

// Define the namespace AddisonWesley.Michaelis.EssentialCSharp
namespace AddisonWesley.Michaelis.EssentialCSharp;
class Program

{

7 7 Defining Namespaces "= 569

Y/ ° e

A file-scoped namespace| declaration (added in C# 10.0) has a statement like
syntax with the ending semicolon. The file-scoped namespace declaration must
precede all other member definitions in the file and there can be only one such

declaration. And, given the declaration, all members within the file will be assigned
to that namespace. In Listing 10.9, for example, Program is placed into the
namespace AddisonWesley.Michaelis.EssentialCSharp, making its full
name AddisonWesley.Michaelis.EssentialCSharp.Program. If you
are programming in C# 10.0 or later, I recommend using this form. It cuts down on
unnecessary indentation and handles all standard cases of namespace declaration.
Additionally, except for HelloWorld scenarios, you should specify a namespace for

all your types.

Page 574
Generating an XML Documentation File

The compiler checks that the XML comments are well formed and issues a warning
if they are not. To generate the XML file, add a DocumentationFile element to
the|ProjectProperties ¢iemommmssiy PropertyGroup

<DocumentationFile>$(OutputPath)\$(TargetFramework)\$(AssemblyName).x
</DocumentationFile>

DataStorage
T This element causes an XML file to be generated during the build into the output

directory wusing the <assemblyname>.xml as the filename. Using the

| CommentSamples |class listed earlier and the compiler options listed here, the

resultant/CommentSamples | XML file appears as shown in Listing 10.13.

LisTING 10.13: Comments.xml

<?xml version="1.0"7>
<doc>
<assembly>
<name>DataStorage<Vname>
</assembly>
<members>
<member name="T:DataStorage">
<summary>
DataStorage is used to persist and retrieve

XML Comments "= 575

employee data from the files.

Page 586-587

[[v - a —

statement expressly for the purpose (see Listing 10.17).

LisTiNG 10.17: Invoking the using Statement

public static class Program
{

public static void Search()
{

// CH 8.0

Resource Cleanup "= 5§

using TemporaryFileStream fileStreaml = new();

// Prior to C# 8.0

using (TemporaryFileStream fileStream2 =
new(),
fileStream3 = new())

// Use temporary file stream;

is identical to the code

licit try/finally block,
y block. The using

In thel first highlighted code snippet, {he resultant CIIL. cod
that would be created if the programmer specified an e
where fileStream.Dispose() is called in the fina

statement, however, provides a syntax shortcut for the try/findlly block.

Within this using statement, you can instantiate morf than one variable by
separating each variable from the others with a comma. Th§ key considerations are
that all variables must be of the same type, the type must implement IDisposable,
and initialization occurs at the time of declaration. To enfofce the use of the same
type, the data type is specified only once rather than before edch variable declaration.

C# 8.0 introduces a potential simplification with regard fo resource cleanup. As

shown in th¢ second highlighted snippet of Listing 10.17) you can prefix the

declaration of a disposable resource (one that implements IDisposable) with the

7

Page 599
Summary

This chapter provided a whirlwind tour of many topics related to building solid class
libraries. All the topics pertain to internal development as well, but they are much
more critical to building robust classes. Ultimately, the focus here was on forming
more robust and programmable APIs. In the category of robustness, we can include

Chapter 10, Summary section:
This topic has been moved to Chapter 9. Summary "= 599

namespaces and garbage Follection. Both of these topics fit in the programmability

category as well, |along with overriding object’s wvirtual members,| operator

overloading, and XML comments for documentation.

Exception handling heavily depends on inheritance, by defining an exception
hierarchy and enforcing custom exceptions to fit within this hierarchy. Furthermore,
the C# compiler uses inheritance to verify catch block order. In Chapter 11, you will
see why inheritance is such a core part of exception handling.

Page 639

Specifying a Default Value with the default operator

Listing 12.11 included a constructor that takes the initial values for both first and
second and assigns them to First and Second. Since Pair<T> is a struct, any
constructor you provide must initialize all fields and automatically implemented
properties. This presents a problem, however.

Consider a constructor for Pair<T> that initializes only half of the pair at
instantiation time. Defining such a constructor, as shown in Listing 12.12, causes a
compile-time error because the field Second is still uninitialized at the end of the
constructor. Providing initialization for Second presents a p‘rlem because you
don’t know the data type of T. If it is a nullable type, null wWould work, but this

approach would not work if T were a non-nullable type.

Listing 12.12: Not Initializing All Fields, Causing a Compile-Time Error

public struct Pair<T> : IPair<T>

{
// ERROR: Field 'Pair<T>.Second' must be fully assifned
/S before control leaves the constructor
// public Pair(T first)
Zat
V74 First = first; Only applicable for C# versions before 11.0. The
VN introduction of the Auto-default struct feature in C#
11.0 resolves this issue.
VA
}

640 "= Chapter 12: Generics

To deal with this scenario, C# provides the default operator. The default value
of int, for example,? could be specified with default. In the case of T, which

Second requires, you can use default, as shown in Listing 12.13.

Page 643-644

Introducing Generic Types " 643

Listing 12.16: Using Arity to Overload a Type Definition

public class

{

}
public class

{

}
public class

{

}
public class

{
}

public class

{
}

public class

A
Ao
P
A
A

{
}

public class
A ¢ ISt
{

}

public class

// ISt
{

}

Ao

P

A

Tuple

Tuple
"uCt

Tuple
uctul

T1, T2> //

<T1, T2, T3,

T1, T2, T3,

«T1, T2, T3,
alEguatable,

«T1, T2, T3,
alEguatable,

Tyl

public class

=

T1, 12, T3,

A4 1 IStructuralEgquatable,

{

P

644 "= Chapter 12: Generics

or ValueTuple?

<Tl> // : IStructuralfguatable,
A/ IStructuralComparable, IComparable

: IStructuralEquatable,
/¢ IStructuralComparable, IComparable

«<T1, T2, T3> // : IStructuralEquatable,

S IStructuralComparable, IComparable

Th> /7 @ IStructuralEguatable,
/¢ IStructuralComparable, IComparable

T4, T5> A/ : IStructuralEgquatable,
/4 IStructuralComparable,
/7 IComparable

T4, TS, Te>
IStructuralComparable, IComparable

T4, T3, T6, T7=>
IStructuralComparable, IComparable

T4, T5, TG, T7, TRest»
IStructuralComparable, IComparable

The ValueTuple<...> set of classes was designed for the same purpose as the

Pair<T> and Pair<TFirst, TSecond> classes, except that together they can
handle eight type arguments In fact, using the last ValueTuple shown mn Listing
12.16, TRest can be used to store another ValueTuple, making the number of
elements of the tuple practically unlimited.

Another mteresting member of the tuple family of classes is the nongeneric
ValueTuple class This class has eight static factory methods for instantiating the
various generic tuple types. Although each generic type could be instantiated directly
using its constructor, the ValueTuple type’s factory methods allow for inference of
the type arguments via the Create() method. Listing 12.17 demonstrates using the
Create() method in combination with type inference 3

Listing 12.17: Comparing System.ValueTuple Instantiation Approaches

#if !PRECSHARP7
(string, Contact) keyValuePair; .
keyvaluePair = misspelled prlor?
("555-55-5555", new Concact("Inigo Montoya®)});
#else /7 Use System. Fa!u@string,fnntacb prior |to C¥ 7.6
ValueTuple<string, Contact> keyValuePair;
keyvaluePair =
ValueTuple.Create(
"555-55-5555", new Contact("Inigoc Montoya®));
keyValuePair =
new ValueTuple<string, Contactx(
"555-55-5555", new Contact("Inigo Montoya®));
#endif ./ IPRECSHARF?

Obviously, when the ValueTuple gets large, the number of type parameters to
specify could be cumbersome without the Create() factory methods.©

5. Simpler for C# 6.0
6. Similar tuple class added in C# 4.0: System. Tuple.

Page 651
To specify an interface for the constraint, you declare an interface type

constraint. This constraint even circumvents the need to cast to call an explicit

interface member implementation.

Type Parameter Constraints

Sometimes you might want to constrain a type argument to be convertible to a

particular type. You do this using a fype parameter constraint], as shown in Listing
12.23.

Listing 12.23: Declaring a|Class Type Constraint

public class EntityDictionary<TKey, TValue>
: System.Collections.Generic.Dictionary<TKey, TValue>
where TKey : notnull
where TValue : EntityBase

/e

In Listing 12.23, EntityDictionary<TKey, TValue> requires that all type
arguments provided for the type parameter TValue be implicitly convertible to the
EntityBase class. By requiring the conversion, it becomes possible to use the

members of EntityBase on values of type TValue within the generic

652 "= Chapter 12: Generics

Page 656

To specify an interface for the constraint, you declare an interface type
constraint. This constraint even circumvents the need to cast to call an explicit

interface member implementation.

| Type Parameter cons!raintsl

Sometimes you might want to constrain a type argument to be convertible to a

particular type. You do this using a as shown in Listing
12.23.

Listing 12.23: Declaring a|Class Type Constraint

public class EntityDictionary<TKey, Tvalue>
: System.Collections.Generic.Dictionary<TKey, TValue>
where TKey : notnull
where Tvalue : EntityBase

Vs

In Listing 12.23, EntityDictionary<TKeys Tvalue> requires that all type

arguments provided for the type parameter T lue be implicitly convertible to the
EntityBase class. By requiring the cgafVersion, it becomes possible to use the

members of EntityBase on vaes of type Tvalue within the generic

652 Chapter 12: Generics

Page 682
82 ™a Chapter 12: Generics

tackle these topics, we will investigate

I ~nd8.0

656 "s Chapter 12: Generics

Nullable<Nullable<int>>. A doubly nullable integer is confusing to the point

of being meaningless. (As expected, the shorthand syntax int?? is also disallowed.)
Since the,class type constraint has been changed to,

type parameter-constraint; please maintain

Multiple Constraints consistency.
cansisiency.

For any given type parameter, you may specify any number of interface type
constraints, but no more than one cl. t as a class may implement

any number of interfaces but inherit from only one other class). Each new constraint

is declared in a comma-delimited list following the generic type parameter and a
colon. If there is more than one type parameter, each must be preceded by the where
keyword. In Listing 12.26, the generic EntityDictionary class declares two type
parameters: TKey and TValue. The TKey type parameter has two interface type
constraints, and the TValue type parameter has one ¢

Listing 12.26: Specifying Multiple Constraints

public class EntityDictionary<TKey, TValue>
: Dictionary<TKey, TValue>
where TKey : IComparable<TKey>, IFormattable
where Tvalue : EntityBase

/s

In this case, there are multiple constraints on TKey itself and an additional constraint
on TValue. When specifying multiple constraints on one type parameter, an AND
relationship is assumed. If a type C is supplied as the type argument for TKey, C
must implement IComparable<C> and IFormattable, for example.

Notice there is no comma between each where clause.

Constructor Constraints

Lambda
expressions

eXpressions.

improvement!¢ for working with collections.

16. Starting in C# 3.0.

Page 734

private Tiodl _Lurrentienperdiure;

Notice the call to the Invoke() method that follows the null-conditional
operator. Although this method may be called using only a dot operator, there is little
point, since that is the equivalent of calling the delegate directly (see
OnTemperatureChange(value) in Listing 14.4). An important advantage
underlying the use of the null-conditional operator is special logic to ensure that after
checking for null, there is no possibility that a subscriber might invoke a stale
handler (one that has changed after checking for null), leaving the delegate null
again.

| |
Guidelines
DO check that the value of a delegate is not null before
invoking it.

DO use the null-conditional operator prior to calling Invoke()
starting in C# 6.0.

Essential \(C#:12.0:
Since)thejtextionith

topicrshould also/be,deleted.
e

J=

G}

ightiside has been removed, this “advanced

734 "= Chapter 14: Events

" ADVANCED TOPIC

The -= Operator for a Delegate Returns a New Instance

Given that a delegate is a reference type, it is perhaps somewhat surprising tha*
assigning a local variable and then using that local variable is sufficient for making
the null check thread-safe. Since localOnChange refers to the same location as
OnTemperatureChange does, you might imagine that any changes in
OnTemperatureChange would be reflected in LocalOnChange as well.

This is mnot the case because, effectively, any calls made to
OnTemperatureChange -= <subscriber> will not simply remove a delegate
from OnTemperatureChange so that it contains one less delegate than before.
Rather, such a call will assign an entirely new multicast delegate without having any
effect on the original multicast delegate to which LocalOnChange also refers.

which provide a significant

Unfortunately, no such special uninterruptable null-checking Togic
exists prior to C# 6.0. As such, the implementation is significantly more
verbose in earlier C# versions, as shown in Listing 14.6.

LISTING 14.6: Invoking a Delegate with Null Check Prior to C# 6.0

public class Thermostat

public float CurrentTemperature
{

get{return _CurrentTemperature;}

_CurrentTemperature = value;
// If there are any subscribers,
/7 notify them of changes in temperature
// by invoking said subscribers
Action<float> localOnChange =
OnTemperatureChange;
if(localonChange != null)
i
/7 Call subscribers
localonChange(value);

}
}

private float _CurrentTemperature;

Instead of checking for null directly, this code first assigns
OnTemperatureChange toa second delegate variable, localOnChange. This
simple modification ensures that if all OnTemperatureChange subscribers
are removed (by a different thread) between checking for null and send-
ing the notification, you will not raise a NullReferenceException.

For the remainder of the book, all samples rely on the C# 6.0 null condi-
tional operator for delegate invocation.

?et originalitext:from Essential G#
if (value != CurrentTemperature) ?—Q

| e s o

pm—

@@

582 'm Chapter 14: Events

P BT

Listing 14_09 (Source Code)

85 catch(AggregateException exception)

86 {

87 Console.WritelLine(exception.Message);

88 if (exception.InnerExceptions.Count >1

89 {

90 // Enumerate the exceptions only if there is more than
91 // one because with one the message gets merged into the
92 // Aggregate exception message.

93 foreach (Exception item in exception.InnerExceptions)
94 {

95 Console.WriteLine("\t{@}: {1}",

96 item.GetType(), item.Message);

97 }

98 }

99 }

100 }

101 }

Page 775

At the time of declaration, lambda expressions are not executed. In fact, it isn’t
until the lambda expressions are invoked that the code within them begins to execute.
Figure 15.2 shows the sequence of operations. 1916

As Figure 15.2 shows, three calls in Listinrigger the lambda expression,
and each time 1t is fairly implicit. If the lambda expression were expensive (such as a
call to a database), it would therefore be important to minimize the lambda
expression’s execution.

First, the execution is triggered within the foreach loop. As described earlier in
the chapter, the foreach loop breaks down into a MoveNext () call, and each call
results in the lambda expression’s execution for each item in the original collection.
While iterating, the runtime invokes the lambda expression for each item to

determine whether the item satisfies the predicate.

776 "= Chapter 15: Collection Interfaces with Standard Query Operators

[Beanram | Frumarahla [rananta | [o I o [

Page 787-Page 789
Listings 15.22 and 15.23 yield identical results. However, the book notes that Listing 15.22 omits the
"Marketing" department, which is devoid of any associated employees.

Listing 16_02(Source Code)
EssentialCSharp / src / Chapter16 / Listing16.02.ProjectingUsingQueryExpressions.cs (5]

@ BenjaminMichaelis Convert to File Scoped Namespaces (#472)

| Code | Blame 37 lines (34 loc) - 937 Bytes

1 namespace AddisonWesley.Michaelis.EssentialCSharp.Chapterl6.Listingl6_02;
2

3 #region INCLUDE

4 using System; I
5 using System.Collections.Generic;

6 using System.IO;

7 using System.Ling;

8 #region EXCLUDE

9 ~ public class Program

10 {

11 public static void Main()

12 {

13 Listl(Directory.GetCurrentDirectory(), "*");

14 }

15 #endregion EXCLUDE

16 v public static void Listl

17 (string rootDirectory, string searchPattern)

18 {

19 #region HIGHLIGHT

20 IEnumerable<string> fileNames = Directory.GetFiles(

21 rootDirectory, searchPattern);

22

23 IEnumerable<FileInfo> fileInfos =

24 from fileName in fileNames

25 select new FileInfo(fileName);

26 #endregion HIGHLIGHT

27

28 foreach (FileInfo fileInfo in fileInfos)

29 { Actually, the dot seems unnecessary.
30 Console.Writeline It can be removed.
31 $@" 1leInfo.Name } ({

32 fileInfo.LastWriteTime })");

33 1

34 }

35 /...

36 #endregion INCLUDE

w
~
-

Page 818
818 ™s Chapter 16: LINQ with Query Expressions

Console.WriteLine(
$"5. delegatelInvocations={ delegateInvocations }");

// Cache the value so future counts will not trigger
// another invocation of the query
List<string> selectionCache = selection.TolList();

Console.WriteLine(
$"6. delegatelInvocations={ delegbteInvocations);

// Retrieve the count from the cached collection
Console.WriteLine(
$"7. selectionCache count={ selectionCache.Count }");

Console.WriteLine(
$"8. delegatelInvocations={ delegateInvocations }");

}
Y/
OuTtpPuT 16.4

delegateInvocations=84
selectionCache count=28
delegateInvocations=84

1. delegateInvocations=0

2. Contextual keyword count=28

3. delegatelnvocations=28 Please double-check the output of this
4. Contextual keyword count=28 code listing as it appears to differ from
5. delegateInvocations=56 the actual results.

6.

7o

8.

Page 821

LisTING 16.7: Sorting Using a Query Expression with an orderby Clause

using System;

using System.Collections.Generic;
using System.Ling;

using System.IO;

/o
public static void ListByFileSizel(
string rootDirectory, string searchPattern)
{
IEnumerable<string> fileNames =
from fileName in Directory]EnumerateFilesd
rootDirectory, searchPattern)
orderby (new FileInfo(fileName))dlength descending,
fileName
select fileName;
foreach(string fileName i fileNam@s)
{
Console.WriteLing{fileName);
}
}
/oy

Listing 16.7#0ses the orderby clause to sort the files returned by Directory

| .GetFiles()| first by file size in descending order, and then by filename in
ascending order. Multiple sort criteria are separated by commas, such that first the
items are ordered by size, and then, if the size is the same, they are ordered by
filename. ascending and descending are contextual keywords indicating the

sort order direction. Specifying the order as ascending or descending is optional; if
the direction is omitted (as it is here on filename), the default is ascending.

822 " Chapter 16: LINQ with Query Expressions

The let Clause

Page 825
Introducing Query Expressions "= 825

LisTinG 16.11: Selecting a Tuple Following the group Clause

using System;
using System.Collections.Generic;
using System.Ling;

VA
private static void GroupKeywordsi()
{
IEnumerable<IGrouping<bool, string>> keywordGroups =
from word in CSharp.Keywords
group word by word.Contains('x");
IEnumerable<(bool IsContextualKeyword,
IGrouping<bool, string> Items)> selection =
from groups in keywordGroups
select
(
IsContextualKeyword: groups.Key,
Items:| groups
)
foreach (
(bool isContextualKeyword, IGrouping<bool, string> items)
in selection) I[t's not necessary to name the
{ subcollection property Items.
Console.WriteLine(Environment.NewLine + "{0}:",
isContextualKeyword ?
"Contextual Keywords" : "Keywords");
foreach (string keyword in items)
{
Console.Write(" " + keyword.Replace("*", null));
}
}
}
Y/
OutpuTt 16.7
Keywords:

abstract as base bool break byte case catch char checked class
const continue decimal default delegate do double else enum

event explicit extern false finally fixed float for foreach goto if
implicit in int interface internal is lock long namespace new null
operator out override object params private protected public
readonly ref return shyte sealed short sizeof stackalloc static
string struct switch this throw true try typeof uint ulong unsafe

Page 826
826 "= Chapter 16: LINQ with Query Expressions

ushort using virtual unchecked void volatile while

Contextual Keywords:

add alias ascending async await by descending dynamic equals from

get global group into join let nameof nonnull on orderby partial remove
select set value var where yield

The group clause results in a query that produces a collection of
IGrouping<TKey, TElement> objects—just as the GroupBy() standard query
operator did (see Chapter 15). The select clause i the subsequent query uses a
tuple to effectively rename IGrouping<TKey, TElement>.Key to
IsContextualKeyword and to name the subcollection property Items. With this
change, the nested foreach loop uses wordGroup.Items rather than
wordGroup directly, as shown in Listing 16.10. Another potential item to add to the

tuple f[would be a count of the items within the subcollection. This functionality 1s

alreadm LINQ’s wordGroup.Items.Count() method,

however, so the benefit of adding it to Theanonymous type|directly is questionable.

Query Continuation with into

As you saw in Listing 16.11, you can use an existing query as the iput to a second
query. However, it 1s not necessary to write an entirely new query expression when
you want to use the results of one query as the input to another. You can extend any
query with a query continuation clause using the contextual keyword into. A
query continuation 1s nothing more than syntactic sugar for creating two queries and
using the first as the input to the second. The range variable introduced by the into
clause (groups in Listing 16.11) becomes the range variable for the remainder of
the query; any previous range variables are logically a part of the earlier query and
cannot be used in the query continuation. Listing 16.12 rewrites the code of Listing

16.11 to use a query continuation instead of two queries.
with
LisTinGg 16.12: Selectingthe Query Continuation

using System;
using System.Collections.Generic;
using System.Linq;
Y/
private static void GroupKeywordsi()

{

IEnumerable<(bool IsContextualKeyword,

Page 839
Primary Collection Classes "= 839

list.Sort();

Console.WriteLine(
$"In alphabetical order { list[0] } is the "
+ $"first dwarf while { list[“l]‘} is the last.");

list.Remove("Grumpy");

OuTtpPuUT 171

In alphabetical order Ba
last.

ful is the first dwarf while Sneezy is the

Best to match with the "index from end" operator (%) in
the code.

C# 15 zero-index pased; therefore, index O n Listing 17.1 corresponds to the first

element and |index 6|indicates the seventh element. Retrieving elements by index
does not involve a search. Rather, it entails a quick and simple “jump” operation to a
location in memory.

A List<T> is an ordered collection; the Add() method appends the given item

Page 851
\Primary Collection Classes "= 851

To create a dictionary that uses this equality comparer, you can use the
constructor new Dictionary<Contact, string>(new ContactEquality).

" BEGINNER TOPIC 9

Requirements of Equ;né)mparisons

As discussed in Chapter several important rules apply to the equality and hash
code algorithms. Conformance to these rules is critical in the context of collections.

Page 852
852 ™s Chapter 17: Building Custom Collections

Finally, GetHashCode() and Equals() must not throw exceptions. Notice
how the code in Listing 17.8 is careful to never dereference a null reference, for
example.

To summarize, here are the key principles:

* Equal objects must have equal hash codes.

* The hash code of an object should not change for the life of the instance (at
least while it is in the hash table).

EI The hashing algorithm should quickly produce a well-distributed hash.

\

The hashing algorithm should avoid throwing exceptions in all possible object
states.

Sorted Collections: SortedDictionary<TKey, TValue> and
SortedList<T>

Listing 17.9(Source Code)

8 MarkMichaelis Added Span<T> example (#556)

‘ Code ‘ Blame 51 lines (45 loc) - 1.74 KB

1 namespace AddisonWesley.Michaelis.EssentialCSharp.Chapterl?7.Listingl7_@9;
2

3 using System.Diagnostics;

4 using System.Runtime.CompilerServices;

5

6 v public class Program

7 {

8 v public static void Main()

9 {
10 #region INCLUDE
11 string[] languages = new [] {
12 "C#", "COBOL", "Java",
13 "C++", "TypeScript”, "Python",};
14
15 // Create a Span<string> from the arrays first 3 elements.
16 Span<string> languageSpan = languages.AsSpan(@, 2);
17 languages[@] = "R";
18 Assert(languages[@] == languageSpan[@]);
19 Assert("R" == languageSpan[@]);
20 languageSpan[@] = "Lisp";
21 Assert(languages[@] == languageSpan[@]);
22 Assert("Lisp" == languages[@]); Span<int>
23
24 int[] numbers = languages.S item => item.Length).ToArray();
25 // Create a r‘om the arrays first 3 elements.
26 Span<int> numbersSpan = numbers.AsSpan(@, 2);
27 Assert(numbers[1] == numbersSpan[1]);
28 numbersSpan[1] = 42;
29 Assert(numbers[1] == numbersSpan[1]);
30 Assert(42 == numbers[1]);
31
32 const string bighlord = "supercalifragilisticexpialidocious”;
33 // Create a Span<char> from a suffix portion of the word.
34 #if NET8_@_OR_GREATER
35 ReadOnlySpan<char> expialidocious = bigWlord.AsSpan(2@..);
36 #else // NET8_®_OR_GREATER
37 ReadOnlySpan<char> expialidocious = bigWord.AsSpan(26, 14);
38 #endif // NET8_@_OR_GREATER
39 Assert(expialidocious.ToString() == "expialidocious™);
40 #endregion INCLUDE
41 }

Page 858
858 ™s Chapter 17: Building Custom Collections

LisTING 17.9: Span<T> Examples

string[] languages = new [] {
!I(:;tl!r "COBOL“’ IlJavall'
"C++", "TypeScript", "Python",};

// Create a Span<string> from the arrays first 3 elements.
Span<string> [languageSpan|= languages.AsSpan(0, 2);
languages[0] = "R";
Assert(languages[0] == lan
Assert("R" == languageSpan[
languageSpan[0] = "Lisp";
Assert(languages[0] == languag@gpan[0]);
Assert("Lisp" == languages[0]);

ageSpan[0]);
)i

int[] numbers = languages.Select(it@m => item.Length).ToArray();
// Create a Span<string> from the arNgys first 3 elements.
Span<int> numbersSpan = numbers.AsSpan
Assert(numbers[1] == numbersSpan[1]);
numbersSpan[1] = 42;

Assert(numbers[1] == numbersSpan[1]);
Assert(42 == numbers[1]);

const string bigWord = "supercalifragilisticexpfalidocious”;
// Create a Span<char> from a suffix portion of
#if NET8_0_OR_GREATER
ReadOnlySpan<char> expialidocious
#else // NET8_0O_OR_GREATER
ReadOnlySpan<char> expialidocious
#endif // NET8_0_OR_GREATER
Assert(expialidocious.ToString() == "expialidocious");

1
o
-

va
=
)
=
o
=
0
wn

§=]
oY
S

Fat

I
o
-

ua
=
s}
=
o
>
n
w

g
u
=

Fan
N
@

To demonstrate the behavior of shared memory, review how we caljgassign a new
value to languages[0] and the corresponding element in languageBSpan will
also update, and vice versa. Furthermore, this behavior applies whether using a
collection of reference types or value types.

There 1s also a ReadOnlySpan<T>, which allows using thk: same construct on
an immutable array such as a string, rather than allocating an entirely new string.
With ReadOnlySpan<T> we can have a new string that points to a slice of the old
string, a significantly more performance-based approach when a slice of the original

array 1s all that 1s needed.

Listing 17.13(Source Code)
EssentialCSharp / src / Chapter17 / Listing17.13.IteratorInterfacesPattern.cs (5

s MarkMichaelis Added Span<T> example (#556)

| Code | Blame 46 lines (41 loc) - 10@8 Bytes

1 namespace AddisonWesley.Michaelis.EssentialCSharp.Chapterl?7.Listingl7_13;
2

3 #region INCLUDE

4 using System.Collections;

5 using System.Collections.Generic;

6

7 ~ public class BinaryTree<T> :

8 #region HIGHLIGHT

9 IEnumerable<T>

10 #endregion HIGHLIGHT

11 {

12 public BinaryTree(T value)

13 {

14 Value = value;

15 }

16

17 #region IEnumerable<T>

18 #region HIGHLIGHT

19 v public IEnumerator<T> GetEnumerator()

20 #endregion HIGHLIGHT

21 {

22 #region EXCLUDE

23 return new List<T>.Enumerator();|// This will be implemented in 16.16
24 }

25 v IEnumerator IEnumerable.GetEnumerator()

26 {

27 return GetEnumerator();l// This will be implemented in 16.16
28 #endregion EXCLUDE

29 }

30 #endregion IEnumerable<T>

31

32 public T Value { get; }

33 public Pair<BinaryTree<T>> SubItems { get; set; }

w
IS
-

)
1

Page 868
It is always safe to call GetEnumerator() again; “fresh” enumerator objects

will be created when necessary.
Figure 17.8 shows a high-level sequence diagram of what takes place. Remember
that the MoveNext () method appears on the IEnumerator<T> interface.

17.14 Mg the foreach statement at the call site mitiates a call to
GetEnumerator() on the CSharpBuiltInTypes instance called keywords.
Given the iterator instance (referenced by iterator), foreach begins each
iteration with a call to MoveNext (). Within the iterator, you yield a value back to
the foreach statement at the call site. After the yield return statement, the
GetEnumerator() method seemingly pauses until the next MoveNext() request.
Back at the loop body, the foreach statement displays the yielded value on the
sereen. It then loops back around and calls MoveNext() on the iterator again.
Notice that the second time, control picks up at the second yield return
statement. Once again, the foreach displays on the screen what
CSharpBuiltInTypes yielded and starts the loop again. This process continues
until there are no more yield return statements within the iterator. At that point,

the foreach loop at the call site terminates because MoveNext() returns false.

lterators ™= 869

Page 886
private static void DisplayHelp()

2. The .NET Standard 1.6 added the CommandLineUtils NuGet package, which also provides a
command-line parsing mechanism. For more information, see my MSDN article on the topic at

[http://itl.tc/sept2016. |
update URL, in my case
(Chinese Edition):
hitp://t.cw/EZsdDn9
Reflection "= 887
{

// Display the command-line help.

Page 902-903

902 % Chapter 18: Reflection, Attributes, and Dynamic Programming

The code that checks for an atimbute 1s relatively sumple. Given a
PropertyInfo object (obtained via reflection), you call
GetCustomAttributes() and specify the attmbute sought, then indicate whether
to check any overloaded methods. (Alternatively, wyou can call the
GetCustomAttributes() method without the attribute type to return all of the

attributes.)
Although 1t 1s possible to place code for finding the
CommandLineSwitchRequiredAttribute attribute within the

CommandLineHandler’s code directly, it makes for better object encapsulation to
place the code within the CommandLineSwitchRequiredAttribute class itself
This 1s frequently the pattern for custom attributes. What better location to place code
for finding an attribute than in a static method on the attribute class?

Initializing an Attribute through a Constructor

The call to GetCustomAttributes() returs an array of objects that can be cast
to an Attribute array. Because the attmbute in our example didn't have any
instance members, the only metadata information that it provided in the returned
attribute was whether it appeared. Attributes can also encapsulate data, however.
Listing 1815 defines a |[CommandLineAliasAttribute |attribute—a custom
attribute that provides alias command-lingloptions. For example, you can provide
command-line support for /Help or /7 an abbreviation. Similarly, /S could
provide an alias to /Subfolders that m&cates the command should traverse all
the subdirectonies.

LisTinGg 18.15: Providing an Attribute Constructor

public class CommandLineSwitchAliasAttriute : Attribute

! public CommandLineSwitchaliasAttribiSe(string alias)
: Alias = alias;
iuh'l.ir. string Alias { get; }

%uhlic class CommandLineInfo

[CommandLineSwitchalias("?")]
public bool Help { get; set; }

Attributes " 903
CommandLineSwitchAliasAttribute

P

To support this functionality, you need to pro a constructor for the attnbute.
Specifically, for the alias, you need a cons that takes a string argument.
(Simularly, if you want to allow multiple aliases, yoll need to define an attnibute that
has a params string array for a parameter.)

When applying an attribute to a construct, only Sonstant values and typeof()
expressions are allowed as arguments. This cons t 15 required to enable their
serialization into the resultant CIL. It implies that attribute constructor should
require parameters of the appropriate types; cre a constructor that takes
arguments of type System.DateTime would be of Wttle value, as there are no
System.DateTime constants in C#.

The objects retumed from PropertyInfo.GetClstomAttributes() wall
be immitialized with the specified constructor arguments Bis demonstrated in Listing
18.16.

LisTinG 18.16: Retrieving a Specific Attribute and Checking Its Inithlization

PropertyInfo property =
typeof(CommandLineInfo).GetProperty("Help™}!;
CommandLineSwitchAliasAttribute? attribute =

(CommandLineSwitchAliasAttribute?)
property.GetCustomAttribute(

typeof(CommandLineSwitchAliasAttribute), fals
if{attribute?.Alias == "?")
i

b

Console.WriteLine("Help(?2)");

Furthermore, as Listing 18.17 and Listing 18.18 demonstrate can use simular
code m a GetSwitches() method on [Comman
returns a dictionary collection of all the switches, mncluding those from the property
names, and associate each name with the corresponding attribute on the

command-line object.

Page 908
908 ™= Chapter 18: Reflection, Attributes, and Dynamic Programming

OuTtpPuT 18.6

...Program+CommandLineInfo.cs(24,17): error CS0592: Attribute
"CommandLineSwitchAlias' is not valid on this declaration type. It is
valid on 'property, indexer' declarations only.

AttributeUsageAttribute’s constructor takes an AttributeTargets
flag. This enum provides a list of all possible targets that the runtime allows an
attribute to decorate. For example, if you also allowed
CommandLineSwitchAliasAttribute on a field, you would update the
AttributeUsageAttribute class, as shown in Listing 18.21.

LisTinGg 18.21: Limiting an Attribute’s Usage with AttributeUsageAttribute

// Restrict the attribute to properties and

[AttributeUsage(/
AttributeTargets.Field | AttributeTargets.Property)]

public class CommandLineSwitchAliasAttribute : Attribute
{

ey
}

|
Guidelines

DO apply the AttributeUsageAttribute class to custom
attributes.

Page 911
Attributes "a 911

writes out the strings for each enumeration flag that is set. In Listing 18.23, file
JAttributes.ToString() returns "ReadOnly, Hidden" rather than the 3 it
would have returned without the FlagsAttribute flag. If two enumeration values
are the same, the ToString() call would return the first one. As mentioned earlier,
however, you should use caution when relymng on this outcome because it 1s not
localizable.

Parsing a value from a string to the enumeration also works, provided that each
enumeration value i1dentifier 1s separated by a comma.

Note that FlagsAttribute does not automatically assign the unique ftlag
values or check that flags have unique values. The values of each enumeration item
still must be assigned explicitly.

Predefined Attributes CommandLineSwitchRequiredAttribute

The AttributeUsageAttribute attribut
haven’t seen yet in the custom attrib
affects the behavior of the

S a special characteristic that you
you have created 1n this book. This attribute
iler, causing it to sometimes report an error. Unlike

the reflection that you wrote carlier for retrieving

CommandLineRequiredAttribute and
CommandLineSwitchAliasAttribute, AttributeUsageAttribute has no

runtime code; instead, 1t has built-in compiler support.

AttributeUsageAttribute is a predefined attribute. Not only do such
attributes provide additional metadata about the constructs they decorate, but the
runtime and compiler also behave differently to facilitate these attributes’
functionality. Attributes such as AttributeUsageAttribute,
FlagsAttribute, ObsoleteAttribute, and ConditionalAttribute are
examples of predefined attributes. They implement special behavior that only the
CLI provider or compiler can offer because there are no extension points for
additional noncustom attributes. In contrast, custom attributes are entirely passive.
Listing 18.23 includes a couple of predefined attributes; Chapter 19 includes a few
more.

Page 913

The C# compiler recognizes the attribute on a called method during -
compilation; if the preprocessor identifier is not defined, it then eliminates Attributes "= 913
any calls to the method.

This example defined CONDITION_A, so MethodA() executed normally.
CONDITION_B, however, was not defined either through #define or by using the
csc.exe /Defline option. As a result, all calls to Program.MethodB() from
within this assethbly will do nothing.

Functionallyy ConditionalAttribute is similar to placing an #if/#endif
around the method invocation. The syntax is cleaner, however, because developers
create the effe¢t by adding the ConditionalAttribute attribute to the target
method withoutymaking any changes to the caller itself.

The C# compiler notices the attribute on a called method during compilation;
assuming the preprocessor identifier exists, it then eliminates any calls to the method.
ConditionalAttribute, however, does not affect the compiled CIL code on the
target method itself (besides the addition of the attribute metadata). Instead, it affects

Page 918

918 " Chapter 18: Reflection, Attributes, and Dynamic Programming

LisTinGg 18.28: [INVOKING A Caller= Attributes Method

ExpectedI&eption<DivideByZer0Exception>.AssertExceptionThrown(
| () => throw new DivideByZeroException()); |

ent 1s specified in the source code for the
eter (for example), the string value “Method” still
is injected and availablg in thd AssertExceptionThrown() method. Obviously,
there is a limited set of sudh Cajl Ler* attributes as shown in Table 18.1.

TaBLE 18.1: Caller* Attributes7

Attribute Description Type

CallerFilePathAttribute Full path of the source file ~ [string

that contains the caller. The
1 path is the path at

comgpile time.

CallerLineNumberAttribute Line nmber in the source System.Int32

file fro hich the method 1s
called.

CallerMemberNameAttribute Method nam&operty string

name of the call

CallerArgumentExpressionAttiibute String representationgf the string

argument expression.

All the Callerx* attributes are limited to use on parameter co
self-explanatory ~ from Lier:g 18.27. The one exc

CallerArgumentExpressio

cts and mostly
ion 18 the

ttrribute since it requires its own parameter.

The CallerArgumentExprespionAttrribute identifies (as text) the 'xpression
used for another parameter within the method. For example, in Listing 18.27] the

expressionl() => throw new Exception() is for the value of testAction.

And, since the CallerArgumentExpressionAttrribute decorating the
testExpression parameter has nameof(testAction) as a parameter for the

7 htine-/laarn micrnenft cam /datnat/ccham/lanonaca_rafaranca/attrnhntac/rallarcinfarmation

Page 926-927

To understand this apparent paradox, let’s reexamine Listing|18.31.| Notice the
call to retrieve the|"FirstName"|element: x
| 18.30

10. Functionality added in C# 4.0.

Z§§

l Programming with Dynamic Objects "= 927

First()
Element.Descendants["LastName" ‘.IFirstOr efault()|.value
The listing uses a string (to identify the element name, but no

1s to ensure that the string 1s correct. If the casing was

compile-time verification o
inconsistent with the ent name or if there was a space, the compile would still
succeed, even tho a NullReferenceException would occur with the call to

erty. Furthermore, the compiler does not attempt to verify that the

"FirstName"| element even exists; if it doesn’t, we would also get the

NullReferenceException message. In other words, in spite of all the type-safety

advantages, type safety doesn’t offer many benefits when you’re accessing the

Avrinnsanin Aatn rtmcand seldlalon tlaa VAAT Alacan ncas

Page 946
946 "= Chapter 19: Introducing Multithreading

a synchronous delegate into an asynchronous task. The worker thread writes
lsigns| to the console, while the main thread writes

tarting the task obtains a thread from the thread p
contrdl, and executes the delegate on that thread. As

1, creating a second point of
own in Listing 19.1, the point

LiIsTING 19.1: In

using System;

{

const int repetith
// Use Task.Facto

{
for(int count count < repetitions; count++)
{
Console.Wr
}
});
for(int count = 0; nt < repetitions; count++)

{
Console.Write('+");

}

Page 964

try

{
Clock.Start();
// Register a callback to receive notifications
// of any unhandled exception
AppDomain.CurrentDomain.UnhandledException +=
(s, e) =>
{
Message(|"Event hagdler starting" };
Delay(4000);
iE
Thread thread = new(() §>
{
Message("Throwing efiception.");
throw new Exceptioni);
});
thread.Start();
Delay(2000);
}
finally
{
Message("Finally block Frunning.");
}
}
static void Delay(int i)
{
Message($"Sleeping for {i} fs");
Thread.Sleep(i);
Message("Awake");
}

static void Message(string tex
{
Console.WriteLine("{0}:{1:@»00}:{2}",
Thread.CurrentThread.MahagedThreadId,
Clock.ElapsedMillisecorfis, text);

964 "= Chapter 19: Introducing Multithfeading

OuTtpPuT 19.4

0047 :Throwing excepti
10052
:0055:Sleeping fo PO0

:0058:Sleeping for 2000 ms

:2059: Awake

:2060:Finally block running.

3:4059:Awake

Unhandled Exception: System.Exception: Exception of type 'System.
Exception' was thrown.

PR WWw

Page 996-997

Thus, this listing is both producing and consuming an async stream.

The signature for GetAsyncEnumerator() includes a CancellationToken
parameter. Because the await foreach loop generates the code that calls
GetAsyncEnumerator(), the way to inject a cancellation token and provide
cancellation is via the WithCancellation() extension method. As Figure 20.2
shows, there’s no WithCancellation() method on IAsyncEnumerable<T>
directly. To support cancellation in an async stream method, add an optional

CancellationToken with an EnumeratorCancellationAttribute as
demonstrated by the EncryptFile

method declaration:

static public async IAsyncEnumegble<string>
EncryptFilesAsync(

string directoryPath = null,

string searchPattern = "+",

[EnumeratorCancellation] CancellationTo

Asynchronous Streams ™= 997

cancellationToken = default)

{ ...}

IAsyncDisposable A
Interface
2

4 Methods
@ DisposeAsync() : ValueTask
FAY

-
IAsyncEnumerator<T> A
Generic Interface

= |AsyncDisposable
-3

IAsyncEnumerable<T>
Generic Interface
-2

4 Methods
4 Properties

ﬁ Current: T
4 Methods

@ GetAsyncEnumerator() AsyncEnumerator<T >

@ MoveNextAsync() : ValueTask<bool>
v

Ficure 20.2;{TAsycnEnumerable<T> and related interfaces

In Listing 20.6, you provide an async stream method that returns the
TAsyncEnumerable<T> interface. As with the non-async iterators, however, you

Page 1018

Regardless of whether the await statements occur within an iteration or as
separate entries, they will execute serially, one after the other and in the same order
they were invoked from the calling thread. The underlying implementation is fo
string them together in the semantic equivalent of Task.ContinueWith() except
that all of the code between the awailt operators will execute in the caller’s
synchronization context.

T'he need to support TAP Trom the Ul 1s one of the key scenarios that led to TAP’s

creation. A second scenario takes place on the server, when a request comes i from a

client to query an entire table’s worth of data from the database. As querying the data
could be time-consuming, a new thread should be created rather than consuming one
from the limited number allocated to the thread pool. The problem with this approach
is that the work to query from the database is executing entirely on another machine.

There 1s no reason to block an entire thread, given that the thread is generally not

active anyway.

To summarize, TAP was crefited to address these key problems:

* There is a need to allow 1@ng-running activities to occur without blgtking the

UI thread. This paragfaph is somewhat confusing, and | suggest rephrased it as follows, do you

think it's appropriate?

Supporting TAP from the Ul is a fundamental scenario that led to the development of
TAP. Ancther common scenario occurs on the server side when a client's request
involves retrieving a large dataset from a database. Given that database queries can be
time-consuming, it's crucial to handle them efficiently. Instead of creating new threads or
using threads from the limited thread poal, it's advisable to utilize asynchronous
programming patterns. These patterns avoid blocking threads while waiting for the
database respaonse, especially since the actual query operations are executed on a
separate,machine,(the,database,server)..This,approach,ensures;that,server,resources

are used optimally, allowing threads to manage other tasks rather than being idle during
|/O operations.

Summary " 1019

* Creating a new thread (or Task) for non—CPU-intensive work is relatively
expensive when you consider that all the thread is doing is waiting for the

acrtivity ta cnmnlate

Page 1022

1022 ™a Chapter 21: Iterating in Parallel

parallel. These types of computations are the easiest ones to speed up by adding
parallelism.

LisTinG 21.1: A for Loop Synchronously Calculating Pi in Sections

using System;
using AddisonWesley.Michaelis.EssentialCSharp.Shared;

public class Program

{
const int TotalDigits = 100;
const int BatchSize = 1%
public static void Main()
{
strinq pi = "";
const int iterations = Tot igits / BatchSize;
for(int 1 = @; 1 < iteratiofs; i++)
{
pi += PiCalculator.Calcu
BatchSize, i * Batch
}
Console.WritelLine(pi);
}
}
YIar

using System;

public static class PiCalculator

{
public static string Calculate(
int digits, int startinght)
o The code and its
} output are
... Inconsistent.
}
Y/

The for loop executes each iteration syncBronously and sequentially. However,
because the pi calculation algorithm splits the §i calculation into independent pieces,

it is not necessary to compute the pieces gequentially providing the results are

Exflcuting Loop Iterations in Parallel "= 1023

QuTtpPuTt 211

53 141R87ARIRAATAIIIRLATALITIAIITARATIARALTIOTVIAGIAOATRIARAIAGTLOLARGIIATRIA |

B T B L L L T L L R Y L

406286208998628034825342117067982148086513282306647093844609550582231725
359408128481117450284102701938521105559644622948954930381964428810975665
933446128475648233786783165271201909145648566923460348610454326648213393
607260249141273724587006606315588174881520920962829254091715364367892590
3600113360530548820466521384146951941511609433057270365759591953092186117
38193261179310511854807446237996274956735188575272489122793818301194912

Page 1028

Canceling a Parallel Loop

Unlike a task, which requires an explicit call if it is to block until it completes, a
parallel loop executes iterations in parallel but does not itself return until the entire
parallel loop completes. Canceling a parallel loop, therefore, generally involves the
invocation of the cancellation request from a thread other than the one executing the
parallel loop. In Listing 21.5, we invoke Parallel.ForEach<T>() using Task
.Run(). In this manner, not only does the query execute in parallel, but it also

executes asynchronously, allowing the code to prompt the user to “Press any key to

I3

exif.

LisTinGg 21.5: Canceling a Parallel Loop

using System;

using System.Collections.Generic;
using System.IO;

using System.Threading;

using System.Threading.Tasks;

public class Program

{
/T

static void EncryptFiles(
string directoryPath, string searchPattern)

{

Executing Loop Jerations in Parallel "= 1029

string stars =
"+".PadRight(Console.Windowwidth 1, '*");

IEnumerable<string> files = Directory.GetFiles(
directoryPath, searchPattern,

SearchOption.AllDirectories);

CancellationTokenSource cts = new(};
ParallelOptions parallelOptions = few()

{ CancellationToken = cts.Tok e
cts.Token.Register(

() => Console.WritelLine("Cafp¥eling..."));

Console.WriteLine(rPress ENTER to exit.“b;

Task task = Task.Run(() =>
{
try
i

Page 1056
l[edbe803adf420a38d084dea23544db15.png](:/caeab6069b02443fc9a46c96e1feedcd

Page 1058
1058 ™= Chapter 22: Thread Synchronization

this, new TemperatureEventArgs(value));

This code is valid as long as no race condition arises between this method and the
cvent subscribers. However, the code is not atomic, so multiple threads could
introduce a race condition. It is possible that between the time when
OnTemperatureChange is checked for null and when the event is actually fired,
OnTemperatureChange «could be set to null, thereby throwing a
NullReferenceException. In other words, if multiple threads could potentially
access a delegate simultaneously, it 1s necessary to synchronize the assignment and
firing of the delegate.

All that 1s necessary is to use the null-conditional operator:
OnTemperatureChanged

| OnTemgeraturef? .Invoke(

this, new TemperatureEventArgs(value));

Page 1063

WaitHandle

The base class for Mutex is System.Threading.WaitHandle. It is a
fundamental synchronization class used by the Mutex, EventWaitHandle, and
Semaphore synchronization classes. The key methods on a WaitHandle are the
WaitOne() methods, which block execution until the WaitHandle instance is
signaled or set. The WaitOne() methods include several overloads allowing for an
indefinite wait: void WaitOne()[,' a millisecond-timed wait; bool WaitOne(int
milliseconds); and bool WaitOne(TimeSpan timeout), a TimeSpan

wait. The versions that returnfla Boolean will return a value of true whenever the
WaitHandle is signaled befor the timeout.

In addition to the WaitHandle instance metlhods, there are two key static
members: WaitAll1() and WhitAny(). Like their instance cousins, these static
members support timeouts. Infaddition, they take a collection of WaitHandles, in
the form of an array, so that fhey can respond to signals coming from within the
collection.

Note that WaitHandle dbntains a handle (of type SafeWaitHandle) that
implements IDisposable. A§ such, care is needed to ensure that WaitHandles

are disposed when they are no longer needed.
v

The WaitOne() methods include several overloads: bool WaitOne() for an indefinite
wait, bool WaitOne(int milliseconds) for a wait timed in milliseconds, and bool
WaitOne(TimeSpan timeout) for a wait determined by a TimeSpan duration.

1064 ™= Chapter 22: Thread Synchronization

Page 1066

1066 ™= Chapter 22: Thread Synchronization

TaBLE 22.3: Execution Path with ManualResetEvent Synchronization

Main() DowWork()

Console.WriteLine(
"Application started....");

Task task = new Task(DoWork);

Console.WritelLine(

"Starting . Y H

task.Start();

_DoWorkSignaledResetEvent.Wait(); Console.WriteLine(
"DoWork() started....");

_DoWorkSignaledResetEvent.Set();

C i i _MainSignaledResetEvent.Wait();
"Thread executing...[');

_MainSignaledResetEvent.Set();

task.wait(); Console.WriteLine(
"DowWork() ending....");

Console.WriteLine(
"Thread completed");

Console.WriteLine(

“Application[exiting. |. M)

Page 1069

' ‘Why Synchronization? "=

TaBLE 22.4: Concurrent Collection Classes (continued)

Collection Class Description

ConcurrentDictionary<TKey, A thread-safe dictionary; a collection of keys and
Tvalue> values.

ConcurrentQueue<T¥] A thread-safe queue supporting first in, first out (FIFO)

semantics on objects of type T.

ConcurrentStack<T>H A thread-safe stack supporting first in, last out (FILO)
semantics on objects of type T.

missing)this,one | * Collection classes that implement IProducerConsumerCollection<T>. |
A common pattern enabled by concurrent collections is support for thread-safe

access by producers and consumers. Classes that implement
IProducerConsumerCollection<T> (identified by an asterisk in Table 22.4) are
specifically designed to provide such support. This enables one or more classes to

pump data into the collection while a different set of classes reads it out, removing

1069

Page 1074
1074 "= Chapter 22: Thread Synchronization

Chapter 20
async/await pattern® and the Task.Delay() method added in NET 4.5. As

we pointed out in (Chapter 19, onc key feature of TAP is that the code executing after
an async call will continue in a supported thread context, thereby avoiding any UI

cross-threading issues. Listing 22.13 provides an example of how to use the Task
.Delay() method.

Page 1077

| 23

Platform Interoperability and Unsafe
Code

C# has great capabilities, especially when you consider that the underlying
framework 1s entirely managed. Sometimes, however, you need to escape out of all
the safety that C# provides and step back into the world of memory addresses and
pointers. C# supports this action in two significant ways. The first option 1s to go

through Platform Invoke (P/Invoke) and calls into APIs exposed by unmanaged
dynamic link libraries (DLLs). The second way 1s through unsafe code, which

enables access to memory pointers and addresses.

3. Executing :
Unsafe Code Unsafe Code Declaring
via a Delegate
Platform SafeHandle
. . . Interoperability and 1. Platform Invoke
Point Declaration - 2. Pointers and Unsafe Code Calling

Addresses

Dereferencing
a Pointer

The majority of the chapter discusses interoperability with unmanaged code and
the use of unsafe code. This discussion culminates with a small program that
determines the processor ID of a computer. The code requires that you do the

following:

"= 1077

Page 1080
1080 "= Chapter 23: Platform Interoperability and Unsafe Code

Parameter Data Types

Assuming the developer has identified the targeted DLL and exported function, the
most difficult step is identifying or creating the managed data types that correspond
to the unmanaged types in the external function.! Listing 23.2 shows a more difficult
APL.

LISTING 23.2: The VirtualAllocEx() API

LPVOID VirtualAllocEx(

HANDLE hProcess, // The handle to a process. The
// function allocates memory within
// the virtual address space of this
// process.

LPVOID 1lpAddress, // The pointer that specifies a
// desired starting address for the
// region of pages that you want to
// allocate. If lpAddress is NULL,
// the function determines where to
// allocate the region.

SIZE T dwSize, // The size of the region of memory to
// allocate, in bytes. If lpAddress
// 1s NULL, the function rounds dwSize
// up to the next page boundary.

DWORD flAllocationType, // The type of memory allocation

DWORD flProtect); // |\The type of memory allocation:

Page 1093

Pointers and Addresses "= 1093

DO simplify the wrapper methods by choosing default values
for unnecessary parameters.

DO use the SetLastErrorAttribute on Windows to turn APIs that
use SetlLastError error codes into methods that throw
Win32Exception.

DO extend SafeHandle or implement IDisposable and create a
finalizer to ensure that unmanaged resources can be cleaned up
effectively.

DO use delegate types that match the signature of the desired
method when an unmanaged API requires a function pointer.

DO use ref pardmeters rather than pointer types when
possible.

DO use the SetLastError field of D11Import attribute on Windows to turn APIs that use

SetlLastError error codes into methods that throw Win32Exception.

Page 1105

Summary "™ 1105

ovoid>)(IntPtr)codeBytesPtr;
method(&buffer[0]);
}

Console.Write("Processor Id: ");

char[] chars = new char[Buffer.Length];

Encoding.ASCII.GetChars(buffer, chars);

Console.WriteLine(chars);
} // unsafe

}
else

{
}

return 0;

Console.WriteLine("This sample is only valid for Windows");

}

[System.Runtime.CompilerServices.InlineArrayAttribute(Length)]
public struct Buffer

{
public const int Length = 19;\
12(at least)
private byte _element0;
h
OuTtpPuT 23.6

Processor Id: GenuineIntel

