Fluency with Alice
Workbook to accompany Snyder’s Fluency with Information Technology, 4th Edition

by Robert Seidman, Philip Funk, Jim Isaak, Lundy Lewis

Chapter 4. Game-time with Alice

“All things are ready, if our minds be so.” - Henry the V. Act IV, Scene 3 - William Shakespeare.

4.1: Introduction to the Quest

In the previous chapters you learned the fundamentals of Alice programming by creating a movie of a play
using a story board. There was minimal user interaction - just enough to branch the program to either save
or doom our friendly penguin.

Also previously, the camera’s position was in front of the stage. Even though it was able to move in for a close-
up, the camera still shot from in front of the scene and did not, for example, view the scene from the point of
view of one of our players (i.e., through a player’s eyes).

All of this needs to change in a game environment. We want our game scene setup to be something like a
theatre in the round. As an example, launch Alice and in the Welcome to Alice! window that opens, click on
the Examples tab and open the amusementPark world. When the
world loads, the camera will be facing a carousel in the amusement park.
(See Figure 4-1) Click the Play button. Press and hold either the right or
left keyboard arrow and watch as the camera swivels to see other parts
of the amusement park. You can also press the up-arrow key and the
down-arrow key to move the camera forward and backward. The point
is that an Alice world is not just what you see from moment to moment
in front of the camera. The world also exists above, below, to the left, to
the right, and behind what the camera sees. The camera is a view into
the world from a particular point of view (i.e., position + orientation).

Figure 4-1 amusementPark
When you are finished exploring the amusementPark world, exit from Alice without saving the world.

In a game, we want to see the world from a character’s point of view. This means that the camera ought to be
the eyes of the character and move with the character everywhere. This is called “first person” perspective
(aka, “first person shooter”). Also, the user of the program will want, indeed need, to move some of the
characters around the scene (i.e., personally control character movement). We can do all of these things with
Alice.

But first we need to know the goal of the game. Ours is a quest. The protagonist searches within the world in
order to find and maybe keep hidden treasure and, of course, be surprised by hidden evils. We will also want
to incorporate sound and pictures, known as billboards, into the game space that is our world.

We have provided many exercises for this Chapter. They are, for the most part, our suggestions for extending
the game fun. You will undoubtedly think up many more. Let the games begin!

© 2009 Pearson Education 4-1

4.2: Setting the scene

You can see the results of some of what you will create in this chapter: {Video demo (sound on): Video 4-1}

We start out by setting the scene to look like what you see in Figure 4-2.

The game — In this game you use your mouse
and certain keys to move a character, Kirima,
around until she finds a fairy princess who is
initially invisible. When found, the fairy
princess materializes, latches onto Kirima and
goes wherever Kirima goes. There is a secret
entrance to a National Park that is revealed
when the fairy princess is found. You will
incorporate sound and various camera
angles, one of which looks out from Kirima's

eyes.

Figure 4-2 Initial quest game world setup.

Launch Alice. Close the Welcome to Alice! window. In the menu bar, click File/New World. Use the grass
template. Click the ADD OBJECTS button and go to the Local Gallery and find the Buildings category tile. Open
it. Click on the Igloo class and then on the Add instance to world button. Leave the igloo in its default position.
Rename it to “icePalace.”

Next, go up one level in the Local Gallery and find the People category tile. Open it. Build your own character —
Click on the EskimoGirl class and then on Add Instance to World. Rename her You can build your own
“kirima.” people in Alice. In the

People category, scroll to
The default position of Kirima is in front of the icePalace. Pull the camera ¢, right and find the

straight back a bit to show more of the scene. Use the bottom arrow in the center hebuilder and shebuilder

classes. An advantage of
these classes is that
objects created implement

. ,,%,, L)
camera control. The center camera control looks like this: > A

Now, go up one level in the Local Gallery and find the Nature category tile and
place two trees, HappyTree and PalmTree, into the world. We will not bother @ Walk method. Peter has
renaming them. Resize and position the two trees well forward of kirima as @ walk method.

shown as shown in Figure 4-2.

We realize that the scene you are setting is a bit incongruous - an igloo on grass with trees. But with Alice, we
have the ability to create virtual fantasy worlds that may not exist in reality - or at least not in the reality we
are used to.

The final scene setting is to alter the sky. Go up one level in the Local Gallery and find the Environments
category tile. Click on the Skies folder and then the DesertSky class. Add instance to world. See Figure 4-3.

© 2009 Pearson Education 4-2

http://media.pearsoncmg.com/aw/aw_snyder_fluency_3/alice/video4-1/index.html

Experiment - If you choose
ArcticLandscapeAlaskaMountains
for your sky, the grass changes to
snow. Go ahead and try it. Use
Undo afterwards.

Figure 4-3 The scene with desertSky.

For reasons that will become more apparent later, place a dummy camera marker right where the camera is
currently located. This is so we can relocate the camera back to this
point of view at any time in the game.

Here’s how to do it. In the upper-right-corner of the ADD OBJECTS More than one way to skin a cat” -

screen, click on the more controls >> button. You will see Figure 4-4a
(shown on the next page). Click on the drop dummy at camera button.

Notice the Dummy Objects folder that appears in the Object Tree distinction is that Dummy Objects
can only be placed where an object

already exists.

In Chapter 1, we accomplished a
similar thing using Cones. The

panel. Click on the + to the left of the Dummy Objects folder to open it.
See the result in Figure 4-4b. Rename the Dummy object to
“wideCamera.” See the result in Figure 4-4c.

For similar reasons, let’s mark the spot where Kirima now stands so that we can easily return her to this spot
later during the game. After all, she will wander the world and may wish to return to her starting point.

Here’s how to do it. Click on kirima in the either the Object Tree panel or the World View panel. Then click
on the drop dummy at selected object button. There will be an addition to the Dummy Objects folder in the

Object Tree panel. Click on the + of Dummy Objects to open the folder. You will see a new Dummy object as
shown in Figure 4-5.

=| ;7] Dummy Objects
Q wideCarmera

Figure 4-5 Another Dummy object.
Rename this new Dummy object to “kirimaOriginalPosition.” We will make use of this camera position later.

Click the fewer controls << button to close the controls window. Click the DONE button to close the ADD
OBJECTS window.

© 2009 Pearson Education 4-3

i® single view ' quad view

Move Cbjects Frasly % light @ light
Nelgegwe L Tor Do

[affect subparts [icepalace [icePalace
aspect ratio: |4J3 |1| kirima kirima
lens angle: Q happyTree Q happyTree
— | 555 almTree H
524, drop dummy at camera H a P % palmTree
— [desertsky Q) desertSky
_ @ drop dummy at selected ohject :

=l (] Dummy Objects = (] bummy Objects

e I YideCamera

move camera to dumrmg

fewer controls <<

Figure 4-4a More controls. Figure 4-4b Dummy. Figure 4-4c Dummy
renamed to wideCamera.

4.3: User control of the actors

We want to start the game by having kirima take a few steps forward, turn to face the palmTree, and then
turn (i.e., swivel) 1 complete revolution. In the Method Editor panel, click on the world.my first method tab
to be sure it is open. In the Object Tree panel, click kirima. Then click on the methods tab in the Details
panel. Drag the three instructions you see in Figure 4-6 into world.my first method Do Nothing spot.

Play your world. How does it look?

@ world.my first method _

world.my first method Vo paramelers

No vatiables

& kirima turnto face palmTree = more..
i Kirima move forward — .5 meters = more...

& kirima turn left = |1 revolution = more...

Figure 4-6 Opening moves for kirima.

User control of object movement using arrow keys

We can give the user control over kirima’s movement. To do this we need to add an event. In the Events
panel, click the create new event button. From the drop-down list select Let the arrow keys move <subject>.
See Figure 4-7a. You can see the result in Figure 4-7b.

© 2009 Pearson Education 4-4

create new event

When the world starts

When a key is typed

When the mouse is clicked on something
While something is true

When a variable changes

Let the mouse move <ohjecis>

Let the arrow keys move <subject>
Let the mouse move the camera
Let the mouse orient the camera

When the world starts, do world.my first method

Lot —_ move camera
AR

— ——

Figure 4-7a Create a new event.

Figure 4-7b Let the arrow keys move <object>.

Note that camera is the default subject. Click camera, shown Figure 4-7b, and choose kirima/the entire
kirima. See Figure 4-8. Save your world. Play the world and use the arrow keys to control kirima’s

movements.

~ When the world starts, do ~ world.my first method

b 1
ilet _l move camera
e
- & camera
® camera
light
ground
icePalace »
the entire Kirima kirima >
P head y | happyTree L
rightUpperfrm # palmTree »
leftUpperdrm » Dummy Objects » ——
rightUpperLeg » | UESertSky Bw pa
erthperies > T

Figure 4-8 Setting arrow controls for kirima.

© 2009 Pearson Education

Events have two components:
An event trigger is a condition
that causes an event handler to
execute.

An event handler consists of
instructions that respond to the
event trigger.

For example, look at Figure 4-7b.
When the world starts is the
event trigger and world.my first
method is its event handler.

4-5

We want to be sure that human players watching the video know which keys control which kirima actions.
Drag the print control from the bottom of the Method Editor panel and place it as the first instruction in the
world.my first method. Choose text string and type: “Use arrow keys to move and turn kirima.” See this in
Figure 4-9. Click the Play button and you should see the print text at the bottom of the animation window.
{Video demo: Video 4-2}

Explore - Imagine a similar user arrow key option for peter in Chapter 3 when ollie is breathing
fire at him. By responding to arrow key events, peter could dodge the flames. This is left as a
Chapter 4 exercise.

@ world.my first method _

world.my first method Noparameters

No variahlas

prlm Use arrow Keys to move and turn Kirirma
kirima turntoface palmTree more...

i Kirima move forward — 0.5 meters = more..

ZKirima — | turn left — 1 revolution — more...

Figure 4-9 Using the print control to put text at bottom of animation window.

Important note about object and viewer perspectives

After kirima goes through her initial movements, experiment with the four arrow keys on your keyboard.
Note that the up-arrow key moves Kirima forward with respect to her point of view. The down-arrow key
moves her backward with respect to her point of view. The right-arrow key turns her clockwise with respect
to where she is facing. The left-arrow key turns her counter-clockwise with respect to where she is facing.
Objects are axis egocentric. They view the world and move relative to where they are placed and facing (i.e.,
point of view), and NOT with respect to the way YOU are facing.

Example: If kirima is facing you (i.e., she is looking out at you from out of the screen), you might think that
pressing the up-arrow key would move her away from you (i.e.,, backwards with respect to where she is
facing). Instead, the up-arrow key moves her toward you, which is forward relative to the way she is facing.
That is an example of what object axis egocentric means.

© 2009 Pearson Education 4-6

http://media.pearsoncmg.com/aw/aw_snyder_fluency_3/alice/video4-2/index.html

User Mouse Control

Arrow key control of kirima is fine but kind of slow. What would it be like for the user to click on any object
in the scene to cause Kirima to move to that object? That might be faster.

To do this, click on the create new event button and select the When the mouse is clicked on something event
trigger. See Figure 4-10a. Figure 4-10b shows the resulting event.

Events |create new event |
28 When the world starts
= WWhe) b —J 1
= When a key is typed - — a— —
L [NmENThEmOUSES EHCkEdon Sometiing When -)3 isclicked on amything |, do Nothing

Figure 4-10a When the mouse is clicked on | Figure 4-10b Resulting event.
something event trigger.

Now we need to create an event handler method to move kirima to any object clicked by the mouse cursor
and put that method into the Do Nothing spot in the event we just created, shown in Figure 4-10b.

When the cursor is over any object and that object is clicked, we want Kirima to turn to face the object and
move forward a certain number of steps. While kirima has not yet reached that object, we want kirima to
continue moving forward toward the object until she is within a certain threshold (i.e., distance) away from it.
Does this sound familiar? This is what robin did to get closer to peter in Chapter 3.

Let’s create a method to accomplish this task. Later, we will create a second method that works differently but
accomplishes the same thing to illustrate an alternative algorithm.

Create kirima Cursor Search Method A

In the Object Tree panel, click on kirima. Be sure that the methods tab in the Details panel is active by
clicking on it. Click on the create new method button and name the new method, cursorSearchA. In that
method’s Method Editor panel, click on the create new parameter button and click on the Object radio
button. Name the parameter, target, and click on the OK button to close the window. The target parameter
will allow us to pass the object name that is underneath the mouse cursor into the method itself so kirima
will know which object to move to. See Figure 4-11. The result is shown in Figure 4-12.

© 2009 Pearson Education 4-7

tﬁl Create’Mew Parameter

Name: ‘targeﬂ |

Type: 5 gumber

"' Boolean

| create new parameter |

| create new variable |

% Object

» Other... |5tring | LI

| OK I| Cancel I

Figure 4-11 Create the target parameter.

@ kirima.cursorSearchA

kirima.cursorSearchA :[obi| target

No variables

(Do Wothing

Figure 4-12 target parameter shows at top of cursorSearchA method.

Be sure that the Kirima object is selected in the Object Tree panel and that the function tab is active in the
Details panel. Drag a While control to the Do Nothing spot in the cursorSearchA method as shown in Figure
4-13a and select true. Then drag in the proximity function, kirima is at least threshold away from object, and
drop it on the true condition. Select 2 meters away from/expressions/target. You can see the resulting

instruction in Figure 4-13b

kirima.cursorSearchA [ovi| target

No warigbles

kirima.cursorSearchA [ovi| target

No warghlas

E| While true

(Do Mathing

E| While kirima is at least 2 meters away from target

(Do Nothing

Figure 4-13a While control.

Figure 4-13b Replacing the true condition with a function.

© 2009 Pearson Education

Recall that functions return values. In this case, the function shown in Figure 4-13b will return either a value
of true or false to the While control. The partial While control shown in Figure 4-13b tells the computer that
as long as Kkirima is at least 2 meters away from the target, the returned value is true, which means Do
Nothing. Of course if kirima is indeed more than two meters from the selected target object, we want her to
continue moving toward it instead of doing nothing. So, you can add the instructions shown in Figure 4-14
to have kirima move toward the selected target object. Go ahead and add the instructions now.

Important: The way the While control works in this case is that as long as the While condition remains true,
kirima will cycle through the two instructions shown in Figure 4-14 again and again. But, as soon as the
condition turns false (i.e., Kirima is equal to or closer than 2 meters from the target object), the While control
will be finished and execution moves to the next sequential instruction in the Kirima.cursorSearchA method.
But at this time, there is no other instruction. Therefore, the Kirima.cursorSearchA method is finished.

kirima.cursorSearchA [oi| target

Mo variabies

5 =] wwhile kirima is at least 2 meters away from target

© Kirima — turntoface target — style —abruptly — more...

kirima move forward 1 meter siyie = abrupthy More...

Figure 4-14 While control with all its instructions.

We want kirima'’s cursorSearchA method to be activated whenever the mouse cursor clicks on anything. Look
in karima’s method tab in her Details panel. Drag kirima’s cursorSearchA method and drop it into the do
Nothing part of the When the mouse is clicked on event which is in the Events panel. In the drop-down list
that opens, select expressions and then object under mouse cursor as shown in Figure 4-15a. The resulting
event should look like Figure 4-15b. [If you get an error message, download an earlier PC version of Alice 2.2

from http://alice.org. Downloads/Get Alice 2.2. Click Previous Versions. Current Mac versions work fine.]

—] — —
When - i’ is clicked on amything — , do M target
camera
light
2L Figure 4-15a
icePalace k .
i , Dragging the
irima .
rsorSearchA method into
happyTree
the event.
palmTree r
Dummy Objects
desertSky
f target expressions 4 ohject under mouse cursor |
<None>
thrunths mare..,
e - Figure 4-15b
When p is clicked on anything — , do ;E;kirima.cursurSearchn target = - object under mouse cursor more... Event.

© 2009 Pearson Education 4-9

http://alice.org

Save your world and try it out by clicking on Play. When kirima has finished her initial moves, click on each
of the trees, one by one. Be careful, as you may not actually be clicking what you think you are clicking on. For
example, you might click the grass, which is an object. Practice having kirima move back and forth between
the two trees. Finally, click on the icePalace. Notice, that kirima moves inside the icePalace since that is
where the icePalace’s center is. If you press the up-arrow arrow key when she stops, you can make kirima
go through the icePalance’s wall. Down-arrow key moves her back. Recall that we programmed the arrow
keys earlier to control kirima’s movements - the up-arrow key moves kirima forward. This is an example of
how virtual worlds can be a playground for fanciful situations.

Tech Talk - The proximity function determines how close one object is to another by examining
the distance between their centers. If you move kirima to the left or right in the World View
panel and then click on the icePalace, shown in either the Object Tree panel or the World View
panel, you can see that the center of the icePalace, is inside the icePalace. Because of this, it is
very challenging to develop a method that would permit kirima to walk up to the inside wall of
the icePalace and stop before walking through it.

Finally, add some print control text that tells the viewer to click on an object to make kirima move toward it.
See Figure 4-16 for the location of this text.

[@ world.my first method

world.my first method No parameters

Novatiabies

prmt Use Arrow Keys to move and turh Kirima.
prlm Click on an object to have Kirima move toward that object

= Kirima turntoface palmTree = more...

i kirima move forward — 0.5 meters more...
% Kirima turn left = 1 revolution = more...

Figure 4-16 User instruction added.

Create kirima Cursor Search Method B

In computer programming, just like in any other activity, there are usually a number of different solutions
(i.e., algorithms) for any one problem. Here is different method for kirima that will enable her to move
toward another object. In this case, the method will explicitly refer to itself.

In the Events panel, right-click on the tile for the event we just added and click on disable in the drop-down
list that opens, as shown below. As a result, the event will appear grayed out.

" \When - +% is clicked on anything , do E;Kirima.cursurSearchn target = - object under mouse cursor more...
delete :
change to »
disahle

© 2009 Pearson Education 4-10

Go ahead and create another method for kirima named cursorSearchB. Use Figure 4-17 as your guide.

Let’s do this step-by-step. Because this is a different method from the one we just created, you will need to
create a parameter for this method as well. Parameter names have meaning only within the method they are
created in, so you may name this parameter target as well. Go ahead and do this. Notice that this method
starts off with an instruction to point kirima toward the target (i.e., the target parameter). Next, instead of
the While control used in cursorSearchA, we use an If/Else control. Drag it in. Notice, in Figure 4-17, that the
If/Else control is asking the proximity function whether Kirima is at least 2 meters away from the target.
This is just like the While control in cursorSearchA. Go ahead and do it. Done with Figure 4-17.

Q) world.my first methad I'@ kirima.cursorSearchB

kirima.cursorSearchB | [obi| target

No vatiables

kirima turn to face target mare...

EEEE||f kirima is at least 2 meters awayfrom target

(Do Mothing

Else
(Do Nothing

Figure 4-17 Beginning of cursorSearchB.

Any instruction we put in the Do Nothing block under the If will be executed as long as the If condition is true
(i.e., kirima is at least 2 meters away from target). So, let’s instruct kirima to move forward 1 meter since she
is not yet close enough to the target. See the instruction, Kirima move forward 1 meter shown in Figure 4-18.

So far, so good. We want kirima to continue to face the target and move toward it as long as she is as least 2
meters away from the target (i.e., the If condition is true). In other words, we want her to do what the
cursorSearchB method does. We can accomplish that by dragging the cursorSearchB method tile into set of
instructions following the true condition. You can see the result in Figure 4-18. Yes, you are actually creating
a method that calls itself into action!

When you do drag cursorSearchB in, the following warning message appears.

x

The code you have just dropped in creates a “"recursive method call”. We recommend that you understand
= what recursion is before making a call like this. Are you sure you want to do this?

| Yes, | understand what | am doing, | ‘ Ho, | made this call accidentally.

{Video demo: Video 4-3}

The warning message wants you to be sure that you know that you are asking cursorSearchB to send a
message to itself - telling itself to run itself - which could result in an infinite regress. Click “Yes” in the
warning.

As an analogy, think of when you may have stood between two mirrors that faced each other and looked to
one side. You saw an infinite number of your own images in the mirrors.

© 2009 Pearson Education 4-11

http://media.pearsoncmg.com/aw/aw_snyder_fluency_3/alice/video4-3/index.html

By leaving the Else spot of the If/Else control empty, you create a stopping point so that no infinite regress
occurs. That is, if kirima is no longer at least 2 meters away from the target, the If condition turns to the value
false, and the Else part of the If/Else construct will be activated. The Do Nothing will result, thus stopping the
method from doing anything more. This type of method, one that calls itself, is called a “recursive” method.

© world.my first methad [@ kirima.cursorSearchB -

kirima.cursorSearchB | [osi| target

Novariables

kirima turntoface target more...

[l Kirima — isatleast 2meters — awayfrom target
Kirima move forward = |1 meter = more..
ckirima.cursorSearchB target = target

Else
(Do Wathing

Figure 4-18 Alternative cursorSearchB recursive method for mouse click control.

To try method cursorSearchB out, you must create an event like you did for cursorSearchA (the one you just
disabled). See previous pages for the way to do this. Alternatively, you could simply change the current event
by replacing the call to cursorSearchA with a call to cursorSearchB, thereby replacing one behavior with
another. After you create (or modify) the event, click Play and try clicking the various objects in the scene.

Warning: If you try clicking on Kkirima, the animation will end and you will see a Problem Detected message
like the one shown below. This simply means that you can’t have the target move to itself.

!3 Alice has detected a problem with vour world:
target value must not be equal to the subject value.

Now you have two alternative methods to make Kirima respond to a mouse click: cursorSearchA and
cursorSearchB. She is almost ready to go on her quest.

Finding Kirima
kirima may go off-camera during her quest. You (or someone) will be controlling her movements and she
may be moved out of camera range. So, it is important for you, the gamer, to have an easy way to find her.

Let’s create a method that has the camera turn to face Kkirima, no matter where she is in the game space.
Here’s how to do it. Click on camera in the Object Tree panel. Click the method tab in the Details panel.
Create a new method and name it “findKirima.” Click the method’s edit tile. Drag in the instruction that you
see in Figure 4.20.

© 2009 Pearson Education 4-12

@ camera.findKirima

camera's details camera.findKirima Noparameters

properties Imethuds functions
¢ findKirima

create new method |

No warghlas

i camera — turntoface kirima — more...

Figure 4-20 New method findKirima.

Now you must create an event to activate the method. In the Events panel, click on create new event. Click on
the event trigger When a key is typed. Scroll down to the event you just created, click on any key and choose
letters. Click on the letter F (stands for Find). Click on camera in the Object Tree panel. Drag the new
method, findKirima, into the Do Nothing spot of the new event. The new event is shown in Figure 4-21. The
method Camera.findKirima is the event handler.

When F |~ istyped, do - camerafindKirima

Figure 4-21 Event for camerato find kirima.

Click Play and use the arrow keys to move kirima off screen. Press the F key. After the camera finds Kirima,
move her off screen again and press the F key. As you can see, this only gets us so far. We want much more
user control over the camera and over Kirima.

Bringing Kirima back home

It is important that the gamer has an easy way to return kirima to her original position, no matter where she
has moved to in the game world.

To do this, we create a new event and make when X is typed as the event trigger. The event handler will be
kirima.set point of view to Kirima.originalPosition which you can find in kirima’s methods tab.
Recall that kirima.originalPosition was the dummy object we set up at the start of this Chapter.
{Video demo: Video 4-4} The final event should look like:

When X 1 is typed, do Kirima — set point of view to kirimaOriginalPosition — more...

Don’t forget to tell the user about the F key and the X key features by adding some print controls to the
world.my first method as was done for other keys. Make sure everything works by clicking the Play button
and moving Kirima to the other side of the icePalace (i.e., out of sight). Then press the X key to return her to
her original position. Note that if after you move kirima through the igloo to its other side, and if you press
the F key before you press the X key, the camera will look toward kirima but its view of her will be obscured
by the igloo.

Authors’ file AWB4-1l.a2w to this point in the chapter can be found at
http://media.pearsoncmg.com/aw/aw snyder fluency 3/alice/World Files/.

© 2009 Pearson Education 4-13

http://media.pearsoncmg.com/aw/aw_snyder_fluency_3/alice/video4-4/index.html
http://media.pearsoncmg.com/aw/aw_snyder_fluency_3/alice/World_Files/

4.4: First person point of view

See the world through Kirima’s eyes

Although kirima’s quest allows you, the viewer, to control her movements, you would also like to see things
as she does - through her eyes. This means that we must move the camera to kirima’s point-of-view and
make it travel with her wherever she goes. Recall from Chapter 3 that point-of-view consists of position plus
orientation.

We need to create a new event such that when we press the K key, the camera sees things through Kkirima’s
eyes and the action turns into a first-person game. We would also like to be able to press the Space bar on the
keyboard to return the camera to its original position - where it was at the beginning of the game. Recall that
we put a dummy object at that position and named it wideCamera.

In the Events panel, click on create new event and select When a key is typed. Scroll down to the event you
just entered, click on any key and in the drop-down list, select letters and then the letter K. Drag a Do in order
control into the Do Nothing spot. Click on camera in the Object Tree panel and drag in the items shown in
Figure 4-22. The camera set point of view to is from the camera methods tab and is set to kirima.head’s
point of view. The camera set vehicle is from the camera’s properties tab and is also set to kirima.head. This
means that the object kirima.head will be the vehicle for the camera object.

Analogy: This is just like the real-life car you ride in. The car is a vehicle for your body and you go where it
goes. Your position is its position. When the car turns a corner, you turn with it and, if you are looking out of
the front window, your orientation tracks the car’s orientation.

Drag in an item to create an instruction to move the camera forward from kirima’s head 0.5 meters.
Otherwise, your view will be blocked by kirima’s brown hood. See Figure 4-22. Set all the durations = 0
seconds.

When K_[is typed,
: :[=| Do in order

camera set point of view to Kirima.head duration =0 seconds maore...

do - camera set vehicle to kirima.head duration =0 seconds mare...

: camera move forward 0.5 meters duration =0 seconds More...

Figure 4-22 New event to move camera to kirima’'s point-of-view when K key is pressed.

Click on Play. Press the K key during kirima’s movements. You can still control her movements with the
arrow keys and the mouse click. Try moving kirima toward the trees and into the icePalace. Use the arrow
keys to have her move straight through the back wall of the igloo. Then, use the arrow keys to return her
inside the igloo again and have her turn to face the opening of the igloo. Then, click on a tree to get her to
move to it. Press the X key to return her to her original position. Try other key combinations to see how
things look through kirima’s eyes.

© 2009 Pearson Education 4-14

Here is what you observe. You can observe that the set point-of-view instruction places the camera at the
kirima.head object facing the same way kirima’s head is facing. You can observe that set vehicle to attaches
the camera to kirima’s head so that the camera moves with her as she moves. The combination of these two
instructions gives us the first-person perspective for our game. The camera is now in the same location (i.e.,
position) as kirima’s head and, in effect, is glued to her head, facing the same way the head is facing (i.e,,
orientation). Recall our Chapter 3 explanation that point-of-view = position + orientation.

Restore camera to its original point-of-view

During the game we may wish to restore the camera to its original position and orientation (aka, point of
view). We can do this by creating an event that uses the Space bar (or any other key) to trigger an instruction
to place the camera at the wideCamera dummy object location and face in the same direction as the
wideCamera dummy object. Recall that we dropped this dummy object at the original camera location. Thus,
hitting the Space bar would restore the camera to where it was before it was set to kirima’s point of view.

Create the event shown in Figure 4-23. The event trigger instruction comes from the camera’s method tab.
When Spacel is typed, do camera set point of view to wideCamera mMore...
Figure 4-23 Restore the camera to its original point-of-view at the wideCamera dummy object.

In order to alert the game user to the K and Space bar functionalities we will want to include two new print
control statements in world.my first method. See Figure 4-24.

[O world.my first method |

world.my first method Noparameters

No variables

prlrrt Use Arrow keys to move and turn Kirima.

zprint Click on an object to have Kirima move toward that object
zprint Press "X’ to return Kirima to her original position

zprint Press “F” to find Kirima

zprint Press "K" to see through Kirima's eves

“print Press Space bar to put camera back in original point-of view
i kirima =~ turntoface palmTree -~ more..

; kirima move forward — 0.5 meters — more...

S Kirima — turn left = 1 revolution = more...

Figure 4-24 print statements added for F, K and Space bar.

This event trigger, shown in Figure 4-23, when activated by the Space bar, simply places the camera at the
wideCamera object location and orients the camera to face the same way that the wideCamera object is
facing. Note that this event does NOT change the vehicle for the camera. If you Play the world and press the K
key, the camera gets kirima’s point-of-view and Kirima as its vehicle (i.e, camera moves with her). If you
later press the Space bar, the camera goes to the wideCamera’s location but the camera still moves in
consort with kirima when and where she moves. Although the camera’s point of view has been changed,
kirima is still the camera’s vehicle. But now, the camera may be physically located at some distance from
her head. This makes for some interesting camera angles and shots.

© 2009 Pearson Education 4-15

Try this sequence of actions. Take your time and observe as you move along. Play; let kirima do her
initial thing; press K key; press the down-arrow key 20 times; press X key; press Space bar; hold left (or right)
arrow key down [Notice how the lighting on kirima'’s face changes. There is a light in this world and it can
cast shadows.]; press and hold the up-arrow and/or the down-arrow key; press X key. What do you think?!

Now that we are in the first-person mode, you can create some very interesting camera effects using these
keys in different sequences. Before we try a different key sequence, recall what setting point-of-view with the
Space bar does. It puts the camera at the location of the dummy object called wideCamera and has it facing
the same way that the wideCamera object faces. But because Kkirima is still the vehicle for the camera, the
camera object will move when kirima moves. It’s as though the camera is on the end of a stick protruding
out from Kirima’s head.

The camera is pointing the same way the wideCamera object is pointing but the camera moves through the
world as if at the end of the “stick” whose other end is attached to kirima'’s head. This can make for a very

interesting camera view that follows kirima at a distance.

Try this sequence of actions to see what we mean. Actions are shown in Figure 4.25.

1. Play world. 7. Move kirima backward and forward
using the down and up-arrows. [Notice

2. After kirima does her first moves, use that the camera maintains its original
the up-arrow key to move Kkirima orientation but its position moves with
forward a little bit. kirima as her position changes. Kirima

is still the camera’s vehicle.]

3. Press the K key to get first person
perspective. 8. Now, press X to put Kkirima at her

original position.

4. Move kirima forward a little using the

up-arrow again. 9. Then press the right or left arrow key to
swivel kirima around. Notice that the
5. Press the Space bar. [This sets the camera camera is still on a ‘stick’ protruding out
to the wideCamera object’s point-of- from kirima head some distance away.
view.] When she turns you get to see the effect
of a 360 degree moving view of the game

6. Now, use the right-arrow key to turn space (i.e., world).

kirima. Notice that the camera stays
fixed looking at Kkirima and turns with
her. This makes the background look like
its moving. Turn Kkirima all the way
around and notice how the lighting and
shadows change. Very cool!

Figure 4.25 Example key sequence controlling kirima’s movements & camera point-of-view.

© 2009 Pearson Education 4-16

Release camera from kirima vehicle

We certainly don’t want the camera stuck with kirima as its vehicle forever. Releasing it from kirima is easy.
We just create a new event and use a new key (e.g., W) to make the world the camera’s new vehicle. Then,
pressing the Space bar and then the W key will not only put the camera back at its original position but will
make the world the camera’s vehicle. See Figure 4-26. Put a print control statement in world.myfirst
method to alert the user.

When ﬂ istyped, do camera set vehicle to world — more...
Figure 4-26 W key sets the camera’s vehicle to world, thus releasing it from kirima.
As an exercise, place more objects in the scene out of sight of the camera. When the animation starts, move

kirima around so that these objects come into view. This is similar to the Alice amusementPark example at
the beginning of this chapter.

Authors’ file AWB4-2.a2w to this point in the chapter can be found at
http://media.pearsoncmg.com/aw/aw snyder fluency 3/alice/World Files/.

4.5: Finding & Picking up Quest Objects

What's a quest without finding hidden objects and picking some of them up?

Let’s add an object to the scene. We will create it, position it and then of course, make it invisible (i.e., hide it)
to be discovered by Kkirima.

Click ADD OBJECTS and in the Local Gallery find the Fantasy category. Click on it and then click on the Faeries
tile. Add an instance of LichenzenSpider to your world. Change the name to fairyPrincess. Using your mouse
cursor, move fairyPrincess to the happyTree. Then, in the Object Tree panel, right-click on fairyPrincess,
select methods and resize her to the size you see in Figure 4-27. Make fairyPrincess invisible by right-
clicking on fairyPrincess in the Object Tree panel and select methods and then select set opacity to invisible.

Look ahead — In this game you will move kirima around until she
finds the fairyPrincess who is initially invisible. When found,
fairyPrincess materializes, latches onto kirima and goes
wherever kirima goes. There is a secret entrance to a National
Park that is revealed when fairyPrincess is found.

Figure 4-27 Create fairyPrincess and hide her in the happyTree.

© 2009 Pearson Education 4-17

http://media.pearsoncmg.com/aw/aw_snyder_fluency_3/alice/World_Files/

Finding an object

This idea is that when kirima gets close to fairyPrincess, fairyPrincess becomes visible. To do this requires
some additional instructions in the cursorSearchB method, and cursorSearchA method depending on which
method you enabled in the Events panel. We will use the cursorSearchB method for the rest of this chapter.

Look at the cursorSearchB method shown repeated in Figure 4-18, below.

@ worldmyfistmethod [@ kirima.cursorSearchB

kirima.cursorSearchB 0w target

Mo wariahias

Kirima turntoface target = | more..

'Elif | kirima — isatleast 2 meters — awayfrom target
kirima move forward — 1 meter = more...
E;Ekirima.cursurSearchB target = target

Else
(Do Wathing

Figure 4-18 (repeated here). Alternative method for search.

The logic goes like this: In the cusorSearchB method, focus on the If/Else control. The only way the Else
part is activated is when the If condition is false (i.e., kirima is not as least 2 meters away from the target
object - means she is at or within 2 meters from the target). What we want is for the fairyPrincess to
become visible when kirima is within 2 meters of the fairyPrincess object, but not within 2 meters of any
other object. Thus, we need to put such an instruction in the Else’s Do Nothing spot.

Drag an If/Else control into the Do Nothing spot of the Else part of the If/Else control and select true from the
drop-down list. See Figure 4-27. Note we now have nested If/Else controls - one inside of another.

© 2009 Pearson Education 4-18

@ kirima.cursorSearchB

kirima.cursorSearchB | [obi| target

No vatiables

kirima turn to face target mare...

:::|E||f kirima is at least 2 meters awayfrom target

irima move forward 1 meter more...

kirima.cursorSearchB target = target
Else
SEF true

(Do Wothing

Else
(Do Wothing

Figure 4-27 cursorSearchB with beginning of proximity test.

In the true part of this If/Else control, drag in kirima’s proximity function kirima is within threshold of
object. See Figure 4-28. See result in Figure 4-29. {Video demo: Video 4-5}

@ kirima.cursorSearchB

Kirima.cursorSearchB - [obi] target

Mo variahies

of
 Kirima = turntoface tar
camera
l|E||f Kirima is atlea light rom target
N — ground
= kirima move forw re...
i icePalace »
§§§kirima.cursurSearchB Kirima »
happyTree
s palmTree 4
IS within desertSky
e » Dummy Objects »
5 meters F
10 meters »
0 meters #

F-i-gure 4-28 Place kirima’s p”roxim“ity function in true part of the nested If/Else control.

© 2009 Pearson Education 4-19

http://media.pearsoncmg.com/aw/aw_snyder_fluency_3/alice/video4-5/index.html

|' Q) world.ry first method r@ kirima.cursorSearchB

kirima.cursorSearchB : [osi| target

Mo variables

Kirimma turntoface target ore...
Ellf kirima is at least 2 meters awayfrom target

& Kirima move forward 1 meter More...

‘kirima.cursorSearchB farget = target

Else

I kirima is within 2 meters of target

(Do Mothing

Else
(Do Mothing

Figure 4-29 kirima’'s proximity function in the nested If part.

Now, click on the target of the If part and select fairyPrincess since we only want the fairyPrincess to
become visible if she, and she alone, is the target the cursor clicks on and at the same time, kirima is within 2

meters. See Figure 4-30.

Else

If kirima is within 2 meters of fainyPrincess

(Do Nothing

Else
(Do Wothing

Figure 4-30 Test to see if fairyPrincess is the target.

Finish the method by instructing the fairlyPrincess to become visible when kirima is within 2 meters of the
fairyPrincess. Place that instruction as shown in Figure 4-31. Leave the Else part blank since the method
needs to stop somehow and will do so whenever Kirima is not within 2 meters of fairyPrincess but is within

2 meters of some other target.

© 2009 Pearson Education 4-20

@ world.my first method @ kirima.cursorSearchB

kirima.cursorSearchB - [osi| target

Mo varlables

Kirimma turntoface target = more..

i irima is at least 2 meters away from target

If

kirima move forward — 1 meter = more..
;;;kirima.cursurSearchB target = target
Else

555E||f Kirima is within 2 meters of fairyPrincess

fainyPrincess set opacity to 1 {100%) more...

Else
(Do Mothing

Figure 4-31 cursorSearchB method.

Play, and then click on the happyTree to cause Kirima to move to it. The fairyPrincess should appear. Play
again clicking on palmTree. fairyPrincess should not become visible. Play again and click first on
palmTree and then on happyTree. fairyPrincess should become visible only when kirima approaches
happyTree.

Picking up an object

It is one thing to find an object, but quite another thing to pick it up and carry it with you.

When kirima finds fairyPrincess we want fairyPrincess to latch onto kirima and move with her wherever
kirima goes. To make this happen, drag fairyPrincess move to kirima’s rightMitten into the cursorSearchB

method. Then, make kirima’s rightMitten the vehicle for the fairyPrincess.
See Figure 4-32. {Video demo: Video 4-6}

© 2009 Pearson Education 4-21

http://media.pearsoncmg.com/aw/aw_snyder_fluency_3/alice/video4-6/index.html

|') world.my first method rO kirima.cursorSearchB

kirima.cursorSearchB - [osi| target

Mo variables

Kirimma turntoface target = more..
.|E||f Kirima is at least 2 meters away from target

& kirima move forward = 1 meter = more...

rima.cursorSearchB target = target
Else

kirima is within 2 meters of fairyPrincess

ainyPrincess set opacity to 1 {100%) more...
ainfPrincess move to Kirima.rightUpperArm rightLower Arm.rightMitten maore...
: ainyPrincess set wvehicle to kirima.rightUpperArm.rightLower Arm.rightMitten MOre...

Else
(Do Mothing

Figure 4-32 fairyPrincess moves to kirima's rightMitten which is vehicle for fairyPrincess.

Play to see if it works correctly. After fairyPrincess is on kirima’s rightMitten, use the cursor keys to turn
kirima so you can see fairyPrincess stay on the mitten. Click on the palmTree to see Kirima and her
fairyPrincess move together to it. Use the keys you set for various functions (e.g., K, X, Space bar) and the
arrow keys to move kirima and her fairy guide to various places in the game world.

It is good fortune that kirima discovered the fairyPrincess. So, let’s have the fairyPrincess say to Kirima:
“Thank you for setting me free! I'll guide you on your quest.” To do this, we drag the fairyPrincess say
method into the cursorSearchB method. See Figure 4-33.

Else

S kirima — iswithin 2 meters — of fainyPrincess

fairyPrincess set opacity to 1 {100%) maore...

fain/Princess move to Kirima.rightUpperArm.rightLower Arm.rightMitten MOore...

fainPrincess set wvehicle to kirima.rightUpperArm.rightLower Arm.rightMitten more...

airyPrincess say Thank you for setting me free! I'll guide you on your quest. duration =3 secands more...

Else
(Do Mothing

Figure 4-33 Completed cursorSearchB method.

Copy instructions to cursorSearchA method. If you want, you can now place a Do in order control in the
cursorSearchB method and drag the fairyPrincess instructions into the Do in order control. This is so you can
easily copy the Do in order control and its instructions to the clipboard and later paste them into the
cursorSearchA method in case you decide to use cursorSearchA instead of cursorSearchB. See Figure 4-34.

© 2009 Pearson Education 4-22

[Q) world.my first method [() Kirima.cursorSearchs [@ kirima.cursorSearchAL

Kirima.cursorSearchA (o target

Novariables

E YWhile kirima is at least 2 meters away from target

kirima turntoface target — | style =abruptly More...
kirima move forward 1 meter siyie = abrupthy More...

£[=] Do in order

: fairyPrincess set opacity to 1 (100%) more...
fairyPrincess move to Kirima.rightUpper Arm.rightLower Arm.rightMitten More...
fainPrincess set vehicle to Kirima.rightUpper Arm.rightLowerArm.rightMitten MOre...

fairyPrincess say Thank you for setting me free! I'll guide you on your quest. More...

See Figure 4-34 cursorSearchA method with fairyPrincess instructions copied into it.
Optional: You can add instructions to make the fairyPrincess move her rightArm. See Chapter 4 exercises.

Authors’ file AWB4-3.a2w to this point in the <chapter <can be found at
http://media.pearsoncmg.com/aw/aw snyder fluency 3/alice/World Files/.

4.6: Advertising billboards, pictures and sound

What's a game without pictures and sound? Let’s make those enhancements.

Adding pictures

With Alice, we can add images in from the outside. These are called “Billboards.” A Make Billboard... option
exists in the File menu of Alice. This will allow you to select a JPG, GIF, TIFF or BMP image to incorporate in
your world. Another way to create a Billboard is to drag an image from a folder on your computer system
directly into the Word View panel. Tip: Alice does best with JPG and GIF files.

For our quest, we will add an image using the File/Make Billboard... approach. You can do this with any image
file already on your computer. Or, you can find images on the web, but be sure that you are not violating
copyright laws. In addition, you can create your own image with a digital camera or cell phone, or even draw
your own image with the Windows Paint facility, for example.

For our quest game, we will add an image as an object that kirima finds with the help of her new found fairy
princess guide. We will alert kirima by using a sound file that we will create and we will notify the user via a
print control.

Games should be entertaining. But also they can be educational - promoting some specific message. To give a
non-commercial example of this, we have selected a picture taken at Denali National Park in Alaska. You can
find this image, Dena2452.jpg at ftp://ftp.aw.com/cseng/authors/snyder/fluency3e/Alice/WorldFiles/. This
picture is in the public domain courtesy of the National Park Service and thus there are no copyright issues

© 2009 Pearson Education 4-23

http://media.pearsoncmg.com/aw/aw_snyder_fluency_3/alice/World_Files/

we need to worry about. Use your own image if you wish. You could think of this as a end point of kirima’s
quest where the goal is to find this specific objects associated this particular National Park. Maybe that’s what
kirima is supposed to do - move around the game space until she finds this picture. It’s your call - it's your
game!

Know the folder where you have the image you wish to bring into your game. Click File/Make Billboard....
Browse to the image and import it. You will see the image name in the Object Tree panel. The imported
picture is an Alice object but is not 3D. You will find the mirror image of the picture on the backside of the
billboard.

;g;pﬁ camera
(3 ight

a ground

a icePalace
a kirima

a happyTree
a palmTree
555@ desertSky
a fairyPrincess
(L Juenalinp ..

Figure 4-35 Billboard in the game space.

This is a good time to rename the image to a useful name in the context of your game. In this case, we use
denaliNP which is the designation for Denali National Park. The picture is a bit small, so we can resize the
image by a factor of two to get it into the right scale compared to other objects. To do this, right-click on
denaliNP in the Object Tree panel and select methods and then choose resize/amount/2 (twice as big).

Let’'s also have the billboard face Kkirima. Right-click on denaliNP and select methods/turn to
face/Kirima/the entire kirima. To confirm that the denaliNP billboard has its mirror image is on the back,
choose the method that turns the billboard around 1/2 revolution. Then, Undo.

Fun feature - You can use an imported picture as the ground image. Try this out. Click ground
in the Object Tree panel. Click on the properties tab in the Details panel. To the right of the skin
texture tile, click on ground.GrassTexture and choose denaliNP and then choose
Denali_Texture. The grass in World View panel turns into the Danali picture. Click the Undo
button if you want.

Let’s move the picture back a bit so it fits inside the igloo. Use your cursor to move the billboard into the
igloo. It will get smaller as it moves backwards. If necessary, you can resize it larger when you are done
moving it.

We want to hide denaliNP in the game space. We could make it invisible, as we have done before with
fairyPrincess. However, another option is to have it pop-up from underground when kirima finds the
fairyPrincess. This provides a different kind of ‘reveal’ which can be fun and surprising in some situations.

© 2009 Pearson Education 4-24

To do this, move the picture down 10 meters by right-clicking on denaliNP and, selecting
methods/move/down/other/10. We could move it down less, but mainly we want it all underground.

Now let’s work all of this into the game. Click on kirima in the Object Tree panel and select the methods
tab in the Details panel. Click on the edit button next to the cursorSearchB method. This is because
cursorSearchB, rather than cursorSearch4, is active in the Events panel. Take note of the instruction that has
the fairyPrincess thanking kirima. Drag a Do together control under it. Click on denaliNP in the Object
Tree panel and click on the methods tab in the Details panel. Drag the move/up/10 into the Do nothing part
of the Do together control. Click Play and click on the happyTree to try this out. The picture pops up inside
the igloo. But, let’s have it move to the front of the igloo just a bit. Click on denaliNP in the Object Tree panel
and click on the methods tab in the Details panel. Drag the move/forward/5 meters (or whatever distance
works for you) into the Do together control. Click Play and click on the happyTree. Copy the Do together and
paste it into the cursorSearchA method just in case you decide to use it instead of the cursorSearchB method.

Adding sound

Let's add an audio clue to the game. Select the fairyPrincess in the Object Tree panel and select the
properties tab in the Details panel. Notice the Sounds property toward the bottom. Click the + to expand it.
You can import a sound file (wav or mp3 type file) from your computer’s hard drive or you can record a
sound using your computer’s microphone. Most laptops have a microphone built into the unit. All you have to
do is to speak toward your laptop.

To record your own voice, click the record sound button. A sound recorder window will appear. Give the
sound a name like “takeMeToDenali” and then click the record button. Say or whisper: “Take me to Denali
National Park - the entrance is in the Igloo.” Select Stop once you have recorded the message. Play the sound
to see if it is what you want. You can re-record it if you wish. Whispering provides a somewhat unique voice
for the fairy and obscures your own voice. See Figure 4-36.

E]edu.cmu.(s.stage.?..alic 3 i : Re x|

Name: |takeMeToDenaIi |

Duration: 0:05.860
‘ Record I Play |

‘ OK I Cancel |

Figure 4-36 Alice sound recorder.

Click the OK button. The sound object you just created shows up in the fairyPrincess’s properties tab under
Sounds. Now you will want to drag this object into the cursorSearchB method following the denaliNP move
up instruction.

To do this just click kirima in the Object Tree panel. Click the methods tab in the Detail panel. Click the edit
button next to the cursorSearchB method. Click fairyPrincess in the Object Tree panel. Click the properties
tab in the Details panel. Make sure Sounds is expanded. Drag takeMeToDenali and drop it under the
denaliNP move up 10 meters instruction in the Do together control. Do the same for cursorSearchA in case
you decide to use it instead of the cursorSearchB method.

© 2009 Pearson Education 4-25

It would be good to add a print control to world.my first method to tell the user to make sure their computer’s
sound is on.

Final Thoughts on Chapter 4

You have only just begun to play. There is so much more you can do with this game, but there are only so
many Workbook pages. For example, you might want to have lots of different
objects pop up from underground all over the game space offering clues as to
where the fairyPrincess can be found. Or, after she is found.

By the way, there is an interesting bug that was inadvertently introduced by
virtue of adding the billboard and sound in Section 4.6. The bug causes certain
unintended consequences. These things often happen in the process of creating
programs. See Exercises 12 and 14.

Take a look at the exercises where we have provided some ideas. Don't just rely on us for ideas. Try your own.
Talk with your friends and teachers to help generate ideas and even make up your own exercises. You will be
pleased at what you can do with Alice. Have fun!

Authors’ file AWB4-4.a2w to this point in the chapter can be found at
http://media.pearsoncmg.com/aw/aw snyder fluency 3/alice/World Files/.

Note: There are four tutorials that come packaged with Alice. You can find them in the “Tutorials” tab in the
Welcome to Alice! window accessed from File/New World. We recommend that you do these tutorials. They
are informative and fun. Plus, you now have the background and experience to get so much more out of them
in light of the Alice fluency skills, concepts and capabilities you have developed.

© 2009 Pearson Education 4-26

http://media.pearsoncmg.com/aw/aw_snyder_fluency_3/alice/World_Files/

Exercises for Chapter 4

In this chapter we moved from animated movies to game-like programs where the user participates in the
action rather than just watching it. Nonetheless, it is all programming and you have used some of the same
techniques discussed in previous chapters. The exercises below are meant to stretch your imagination. Often,
good programming has more to do with imagination and creativity than simply writing instructions. Have fun
with these exercises.

1. Inasidebar early in the chapter, we suggested that you build your own Alice characters from scratch. In
the Local Gallery, go to the People category, scroll to the far right and find the hebuilder and shebuilder
classes. Add a character to your scene and demonstrate that the character can walk.

Saving your new character for later use. Once you have built your character, you may want to save it so
that you can use it in other Alice worlds you create. To do this simply right-click on your object in the
Object Tree panel and select save object. The object will be saved with an .a2c file extension. To import
the saved object into another Alice world: File/import; browse to the object file; click the import button.

2. We saw that kirima can go through the igloo wall. That’s strange, but it’s ok in a fantasy world. Try to
come up with some algorithms that would prevent Kirima from walking through the wall. For example, if
kirima knew the position of the igloo and knew her own position relative to the igloo, is it possible to
prevent her from walking through the igloo with mathematical calculations? Do you have any other
brilliant ideas? (Hint: This is a challenging exercise, so just try to come up with some clever approaches to
the problem.)

3. In Section 4.3, you were shown how to press X to put kirima at her original position and then press the
right or left arrow key to rotate kKirima about her axis. Now, place more objects in the scene, but make
them out of sight of the camera when the animation starts. As you move kirima around, demonstrate
that these objects will come into view. (Hint: This is very easy exercise, unlike the previous exercise.)

4. A puzzle: Press K and then F. This sequence causes kirima to be looking at the back of her own head.
Explain why this is the case.

5. If we choose to use When a key is typed, we could have assigned movement to each of the four arrow keys
individually (named Up, Down, Left, Right) and specified different distances and durations for each key.
Try it out.

6. Add some instructions to make the fairyPrincess move her rightArm. Also, add some interesting
background sound for the fairyPrincess. Decide when the rightArm should move and when the sound
should be heard, and implement those behaviors accordingly.

7. Think of some other interesting behavior for some special key, e.g. moving very fast or moving very slow.
Create a new event using When a key is typed to implement your idea.

8. Try to figure out how to make the camera go back and forth from one character to another when the
characters are having a conversation, just like you see in the movies.

9. Go back to the Chapter 3 Alice program and Implement the arrow keys for peter for use when ollie is
breathing fire at him. By responding to arrow key events, peter could dodge the flames.

© 2009 Pearson Education 4-27

10.

11.

12.

13.

14.

Want background music to play during the game? Import a wav or mp3 file and set it up to play
continuously. Hint: put it in a Loop control inside world.my first method.

Nice that there are a number of event triggers that can be used. Try some out. For example, Let the mouse
move the camera. This could make for some interesting camera angles.

create new event |

|Display Menu of Hew Event Types
When a key is typed
When the mouse is clicked on something

While something is true

When avariahle changes

Let the mouse move <ohjects>

Let the arrow keys move <subject>
Let the mouse move the camera

Let the mouse orient the camera

When you play the end of Chapter 4 Alice file (AWB4-4.a2w) and click on the happyTree object,
fairyPrincell shows up and says something to kirima. The denaliNP object appears in igloo. If you click
on this object, kirima will turn to face it and move toward it. But, as she approaches denaliNP
unexpected things happen. What and why? Look in the Alice program instructions for the answers. By the
way, these same things happen for any object clicked after fairyPrincess appears.

At the end of the chapter, kirima with her fairyPrincess see the revealed entrance to Denali National
Park in the igloo. Add instructions to make the Billboard come forward from the igloo and resize enough
to obscure the igloo. Have kirima tell (via sound or say method) the user to use the control keys so she
and the fairyPrincess can move right through the picture (i.e., step into the park).

In Exercise 13, above, alter the program instructions so that the unexpected things noted in Exercise 12
no longer occur.

Group Exercise

The following exercise is a group exercise. Depending on the size of the class, form groups of three students

or so, and see what you can come up with.

Be a Thinker/Designer. We can let our imaginations run wild to think up interesting things we can do in this
sort of fantasy world. Divide yourselves up into groups, where each group writes down some interesting,
creative idea that expands upon what you have done in this chapter. Develop storyboards.

Think of yourself as a designer, where you hand over your idea to a 2" group who must understand and

implement the idea. Engage in discussion with the 2 group to make sure there are no misunderstandings,
and have the 2n group have a go at implementing your idea, whereupon you simply evaluate the 2 group’s
implementation by providing feedback and a grade.

© 2009 Pearson Education 4-28

Chapter 4 Skills, Concepts, and Capabilities

In this chapter we moved from animated movies to game-like programs where the user plays a part in the
action. Game-like programs are built by writing computer instructions, and thus you have used some of the
same technical skills for writing computer instructions in this chapter that you used in previous chapters.

This chapter was big on events. You learned about event-based programming where you wrote computer
instructions so that the typing of a keyboard character (i.e., the event trigger) would cause certain
instructions to be executed (i.e., the event handler) which in turn impacted the behavior of one or more of
your objects (e.g,, kirima and fairyPrincess).

Event programming is all around us. For example, think of what happens when you click a virtual button on
your computer screen. The event trigger is when the mouse is clicked within a certain array of pixels and the
event handler is the set of instructions that make the button appear to be pressed.

In this chapter you learned about Boolean variables (a variable that has only two values - true or false,
sometimes called just Booleans) and another conditional control. When used in an If/Else control, these
| Boolean values cause instructions in one part or another part of the
control to be executed. This is one way computers can be
programmed to make decisions based upon the truth or falsity of

If/Else control certain conditions.

Of course, we use these kinds of “controls” all the time in our

e false everyday lives, but now you know that they are used extensively as
computer instructions. This is the kind of observation that makes one
more fluent in IT and less afraid of technical concepts.

Some other technical concepts that were reinforced in this chapter include modeling & abstraction,
algorithmic thinking, expecting the unexpected, and how to debug a computer program. You also learned how
to construct two separate programs that cause the same behavior - cursorSearchA and cursorSearchB. The
latter was a recursive method - where an instruction in the cursorSearchB method made a call to the method
itself! You learned that in general, there are several ways to implement a desired behavior.

And finally, you've learned, and we hope experienced, an important concept in this chapter although we never
actually used the word: immersion. The concept of immersion is becoming more and more important as we
witness the evolution of computers, computer simulations and computer games. An analogy is this: We're all
accustomed to watching a movie passively, but with immersion we actually become part of the movie and our
decisions and behaviors influence how the movie unfolds. Sometimes this is called virtual reality and the field
is rapidly expanding and changing. Perhaps you have heard of Second Life. If not, a brief web search will help
you learn about being immersed in a virtual world. Maybe your university already has (or is planning) a
virtual campus in Second Life.

Immersion will have a large social impact on us in the future as we program computers for serious purposes.
Imagine a computer program that helps a person drive a car, or fly a plane, or teach a class, or play tennis, or
repair a human heart or get over certain phobias. There are some early examples of such programs in use
today, and the concepts and skills used to develop those programs are quite similar to those that you've
learned in this and in previous chapters.

© 2009 Pearson Education 4-29

	Fluency with Alice Workbook to accompany Snyder’s Fluency with Information Technology, 3e
	Chapter 4. Game-time with Alice
	4.1: Introduction to the Quest
	4.2: Setting the scene
	4.3: User control of the actors
	User control of object movement using arrow keys
	Important note about object and viewer perspectives
	User Mouse Control
	Create kirima Cursor Search Method A
	Create kirima Cursor Search Method B
	Finding Kirima
	Bringing Kirima back home

	4.4: First person point of view
	Restore camera to its original point-of-view
	Release camera from kirima vehicle

	4.5: Finding & Picking up Quest Objects
	Finding an object
	Picking up an object

	4.6: Advertising billboards, pictures and sound
	Adding pictures
	Adding sound
	Final Thoughts on Chapter 4
	Group Exercise

	Chapter 4 Skills, Concepts, and Capabilities

